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Resumo

Os sistemas de recomendação moderam uma quantidade substancial da interface de interação

online, fornecendo uma gama cada vez mais relevante de benefícios para utilizadores e fornecedores

de negócios, numa era de crescimento exponencial de conteúdos, produtos e serviços digitais

disponíveis.

Alguns domínios, como aplicações de viagens e de e-commerce, estão dependentes de perfis de

atividade esporádica e maioritariamente anónima, permitindo apenas acesso a dinâmicas derivadas

de sessões de curto prazo que exigem soluções robustas independentes de perfis de utilizadores

estruturados. Este trabalho abrange o desenvolvimento de um sistema de recomendação para re-

ranking com deep learning e mecanismos de atenção, sujeito a estas condições desafiadoras, com

base nos dados fornecidos para o 2019 ACL Recommender Systems Challenge.

A abordagem desenvolvida demonstra um resultado no 85º percentil (em termos de MRR online

previsto, considerando um intervalo de resultados limitado a valores superiores aos da baseline

fornecida) com geração mínima de features num ambiente computacional bastante restritivo. As

várias inconsistências inerentes ao campo de investigação, incluindo a divergência proeminente

entre objetivos de produção offline e online, motivaram uma mudança no foco principal do trabalho

de desempenho ao nível da tabela classificativa, que normalmente recompensa o excesso de engen-

haria de features e complexidade demodelos. Em alternativa, foi enfatizada a análise do potencial de

aprendizagem de representações e do impacto dos componentes específicos da arquitetura obtida,

derivados de um procedimento de Otimização Bayesiana automática com Processos Gaussianos

sobre um espaço de hiperparâmetros altamente condicional.

Palavras-chave: Sistemas de recomendação, recomendação baseada em sessões, mod-

elação de interações sequenciais, deep learning, self-attention, otimização bayesiana
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Abstract

Recommender systems mediate a substantial share of the online interaction interface, providing

an ever-more relevant array of benefits for both users and business providers amidst the exponential

growth of available digital content, products and services.

Some domains, such as travel and e-commerce applications experience sporadic and mostly

anonymous activity, thereby only observing short-term session-based dynamics, requiring robust

solutions independent of structured user profiles. This work encompasses the development of an

attentional deep learning re-ranking recommender under these challenging conditions, on the basis

of the dataset provided for the 2019 ACL Recommender Systems Challenge.

The developed approach demonstrates an 85th percentile result (in predicted onlineMRR, consid-

ering a limited score range exceeding that of the provided baseline) with minimal feature generation

effort in a very restricted computational environment. Nonetheless, various inconsistencies in the

research field including the prominent divergence between offline and online production objectives,

motivated a shift in the main focus away from leaderboard performance, which typically rewards

feature over-engineering and model complexity. An analysis of representation learning’s potential

and specific component impact, derived from an automatic Bayesian Optimization with Gaussian

Processes procedure over a highly conditional hyperparameter space, was emphasized instead.

Keywords: Recommender systems, session-based recommendation, sequential interaction

modeling, deep learning, self-attention, bayesian optimization
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Chapter 1

Introduction

1.1 Motivation

As the amount of available digital information continues to increase exponentially, allowing for

unprecedented access to large-scale services and products, so does the need for systems that

can effectively reduce the impact of overchoice by filtering and retrieving relevant content for users.

Recommender systems, as they are known, constitute key item discovery and exploration platforms,

resulting in business growth and substantial added value to the service providers [1]. YouTube, for

instance, which has recently reported a striking upload rate of 500 hours of content per minute [2],

credits their recommendations for driving more than 70% of web traffic on the platform [3], a figure

that closely follows Netflix’s estimated 80%, with search accounting for the rest [4]. Another example

is that of Amazon’s purchases derived from recommendations, which McKinsey has predicted to be

of around 35% [5]. Consequently, keyphrases such as “recommended for you”, “others have liked”

or “you may also know” keep reshaping the digital landscape, transcending the online shopping,

media and advertisement domains, and expanding into an ever-growing diversity of fields.

Recommendation methods have been refined over time to further enhance the personalized user

experience, usually only made possible with detailed knowledge and deep understanding of the item

space, the users, their preferences and behavior, and additional contextualization. Item similarity

and neighborhood-based methods have given way to latent factor models that take different users’

interaction information into account and hybrid strategies that can better tackle cold start1 situations

and provide multi-scale data modeling. The generalization of these concepts with neural network-

based architectures, for instance, has allowed for increased control over the incorporation of crucial

multi-modal contextual signals, enabling circumstantial factors to adapt the recommendation space,

among an array of other advantages [6]. This is especially useful in the sequential recommendation

setting, where temporal patterns and trends from past implicit and explicit feedback, usually derived

from activity logs, can be complemented with features modeling the continually changing needs and

interests of users to infer their intent and predict future interactions.

1Cold-start refers to the lack of interaction information usually associated with new item or user profiles, non-logged in

searches or infrequent activity producing mostly independent session behavior.
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Nonetheless, some domains such as travel and e-commerce applications experience sporadic

and mostly anonymous activity, thereby only observing short-term dynamics, requiring alternative

solutions independent of structured user profiles. This thesis encompasses the development of

a recommender under these challenging conditions on the basis of the dataset provided for the

2019 ACL Recommender Systems Challenge (Section 1.2), using state-of-the-art methods such as

attention mechanisms, ubiquitous in modern approaches. The misalignment between most offline

objectives and those relevant in production environments (see Section 2.3.3) motivated a shift in focus

away from maximum leaderboard performance achievement with traditional competition strategies

such as the usage of overly complex models or hundreds of input features. Instead, the model’s

architectural optimization process, usually disregarded in the literature, was emphasized in an explo-

ration of representation learning’s potential. Additionally, the developed model was tested against

simpler rule-based baselines which have recently produced competitive results even against the state

of the art in sequential recommendation, and its specific component impact was also assessed.

Although not the focus of this work, the study of these algorithms at the core of news, social

media, and educational or entertainment content feeds is relevant not only for their benefits but

also for the exact opposite. The aforementioned YouTube content figures can be used to provide

some perspective on how insignificantly small the realistically accessible part of the corpus is when

compared to the total amount of available information on the platform, a property reflected across

various domains. The amount of control over when, how, or what information gets disseminated

provides the ideal setup for a highly manipulative setting, strongly tied to the design considera-

tions and objectives of these underlying systems.2 The number of popular services3 exploiting

user engagement and psychological cues derived therefrom (trust, cognitive dissonance, etc.) [8, 9]

to build highly addictive algorithms capable of changing beliefs and behaviors [10] is concerning,

promoting current discussions about ethics, fairness, diversity, explainability and interpretability in

recommendations [6, 11].

1.2 The RecSys 2019 challenge

In its 2019 edition, the annual ACL Recommender Systems (RecSys) Challenge was organized by

trivago, TU Wien, Politecnico di Bari and Karlsruhe Institute of Technology with the goal of exploring

context-aware recommendation on a highly sparse session-based setting, unsuitable for most tradi-

tional approaches [12]. The selected digital travel domain is subject to a variety of obstacles, including

the constantly changing prices, offers, and availability of a vast collection of accommodation, the

extreme cold-start induced by the infrequent listing browsing by mostly anonymous users, and the

highly dynamic search criteria motivated by their variable long and short-term preferences and trip-

specific needs [13].

trivago’s global search platform aggregates localized accommodation information (including price,

2Covington et al. [7], for instance, noted that the simple change in ranking objective from click-through rate to watch time

allowed for better retention of user engagement while significantly reducing the promotion of deceptive and clickbait videos.
3Especially free social platforms with business models revolving around user data.
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Figure 1.1: trivago’s website interaction distribution with the user action types available in the

RecSys19 dataset (with shortened identifiers) presented in Table 1.2, adapted from [13].

rating, visual and textual descriptions, among others) based on user queries. Users can interact with

the listings in multiple ways, some of which are presented in Figure 1.1, and click on relevant ones

to be redirected to external affiliate booking sites where transactions can be completed.

Naturally influenced by the platform’s primary revenue stream centered on cost-per-click [14], the

technical objective of the challenge consisted in the prediction of which items were more likely to be

clicked at the end of each of their user’s largest sessions, from lists of items (impressions) presented

at these events to improve the ranking process. This required the re-ordering of the impression lists

by click likelihood (representing contextual relevance), which was evaluated with theMean Reciprocal

Rank (MRR),

MRR =
1

N

N∑
j=1

1

rankj
, (1.1)

where N is the number of evaluated lists (samples) and rankj is the predicted position rank for the

clicked item (target label) in sample j. The Reciprocal Rank’s value, and consequent new ranking

performance for a sample, increases with the proximity of the target to the top of each list, reaching

its maximum of one for ranked lists where the clicked item appears in the top position (rankj = 1).

Data description The data provided by trivago was comprised of anonymized user session in-

teraction logs recorded in their platform over eight days, 01-08 November 2018, and an additional

accommodation metadata database with item-specific attribute lists. Each log entry is characterized

by the features displayed in Table 1.1, and consists of a single user interaction over a given item,

from the fixed set of ten available types presented in Table 1.2.
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Table 1.1: RSC19 original features.

Original feature Description

User ID User identifier

Session ID Session identifier

Timestamp UNIX timestamp in seconds for the time of interaction

Step Time step in the sequence of events within the session

Action Action type for each event (see Table 1.2)

Reference Reference identifier for each action (see Table 1.2)

Platform Country of the web platform used for the search

City City name for the session search context

Device Device used for the search

Filters List of active filters at a given timestamp

Impressions List of item identifiers displayed to the user in a click event

Prices Corresponding list of nightly prices for the impression items

Metadata Specific item attributes (features and amenities)

Table 1.2: Types of user actions and respective action references.

Action type Description Reference

Clickout Item click that redirects the user to an affiliate website Item ID

Interaction item rating Interaction with an item’s rating/review elements Item ID

Interaction item info Interaction with an item’s information elements Item ID

Interaction item image Interaction with an item’s images Item ID

Interaction item deals Interaction to extend a given item’s affiliate price deals

element

Item ID

Search for item Specific accommodation search Item ID

Change of sort order User determined sort of the presented impressions,

by price, distance, rating and popularity

Sort type

Filter selection User determined impression filtering by feature (e.g.,

amenities or minimum number of stars)

Filter type

Search for destination Specific location-based filtering Location

Search for POI Specific point of interest-based filtering Point of interest

The logs were provided in separate training and test sets, with the latter consisting of events

occurring in the last two days (07 and 08 November), for which the ground truth labels of the clicked

items in the largest user sessions were omitted. Up until the challenge’s deadline of July 2019,

the user-submitted entries, consisting of predicted rank lists for the relevant click event items, were

evaluated on an online platform which has, since then, ceased to operate. At the time of writing,

the omitted test labels have not yet been made publicly available for offline use. As such, the data

regarded in this work is limited to the six-day training set, with its almost 16 million actions, 730 803

users, and 910683 sessions, from here on defined as RSC19.

The local evaluation procedure and further considerations surrounding the data setup are dis-

cussed in Section 4.2.3.
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1.3 Objectives

This work’s research objectives (ROs) were divided into three main points, already lightly intro-

duced in the first Section 1.1, subject to the limitations described in the later Section 2.3.3:

RO.1 Development of a modular deep learning re-ranking recommender system for sparse session-

based domains, focused on representation learning in a limited computational environment;

RO.2 Application of state-of-the-art processing techniques and methods, such as self-attention

mechanisms to help capture user preferences and intent frombehavioral interaction sequences;

RO.3 Implementation of an automatic bayesian optimization process for the model’s architecture,

subject to a highly conditional hyperparameter space.

To more explicitly evaluate the proposed objectives, each one is associated with complementary

research questions (RQs), which guide Chapter 5’s result discussion:

RQ.1 How does the model perform both ranking and classification-wise?

RQ.1.1 What is the influence of the various model components in the predictive task?

RQ.1.2 How does its performance compare to that of simpler non-tunable baselines and

challenge’s leaderboard submissions?

RQ.2 Is the attention mechanism able to:

RQ.2.1 Provide any performance benefit?

RQ.2.2 Learn any meaningful sequence-based patterns?

RQ.3 How does the bayesian optimization process:

RQ.3.1 Compare to a random space search?

RQ.3.2 Impact the optimization results?

1.4 Thesis outline

The remaining document is organized into five different chapters, as follows. Chapter 2 provides a

brief overview of the core recommendation concepts, while delineating the research field’s evolution

and enumerating various modern approaches, including their focuses and limitations, supported

by relevant literature. Chapter 3 delves into deep learning, describing the theoretical background

behind the structural units and mechanisms used, their learning processes, optimization strategies

and evaluation procedures. The following Chapter 4 consists of the methodology approach taken

to tackle the recommendation problem, applying knowledge introduced in previous chapters to the

dataset processing and model development. The recommender’s performance is then modularly

evaluated and compared against baselines in Chapter 5. Finally, Chapter 6 includes a few concluding

points and enumerates interesting topics to take into consideration in future work.4

4Future work display note Future work items from Section 6.2’s list are referenced throughout the text using (FW) tags.
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Chapter 2

Recommender Systems

This chapter provides a brief overview of the core recommendation concepts, expanding on some

of the previously introduced topics and contextualizing modern approaches with literature review

based on related work and traditional foundations.

2.1 Traditional recommendation

The traditional recommendation problem is typically formulated on the basis of a utility matrix R,

with each entry rui corresponding to the interaction of a user u with an item i [15]. In this setting,

the interaction variables often correspond to explicit preferences, such as ratings, or discretized

representations of implicit feedback, usually in binary form (see Section 2.2). The objective is to

extrapolate unknown interaction information from the known entries (i.e., complete the matrix), with

the predicted interaction scores serving as proxies for user interest over the relevant items. Con-

strained on the inherent matrix sparsity attributed to the fact that most users on a platform have not

interacted with most available items, and cold start situations regarding new users and items without

interaction histories, recommendation strategies are generally divided into three main categories:

content-based, collaborative filtering and hybrid methods [6, 15].

2.1.1 Content-based

Content-based approaches recommend items with features similar to those of other items a user

has previously interacted with. To this end, item profiles consisting of either feature vectors manually

extracted from auxiliary attributes (metadata, for instance), or more automated distributed represen-

tations (embeddings)1, are created. The profiles of a given user’s interacted item set can be combined

using an averaging method to obtain a vector representation for that same user. A nonparametric

approach such as nearest-neighbors with an arbitrary similarity measure is then often used between

this representation and unevaluated candidate item profiles to retrieve a recommendation list.

This process is able to recommend new and unpopular items, cater to specific niches, and provide

explanations based on the relevant item features. Nevertheless, basing the user profiles solely on

1For documents, the classic information retrieval term frequency-inverse document frequency (TF-IDF) encoding over a set

of relevant words is a popular choice [11].
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previous interactions leads to overspecialization, greatly limiting the item discovery potential of the

system. Additionally, the non-trivial selection of appropriate comparison features and metrics also

constitute important issues.

2.1.2 Collaborative filtering

Collaborative filtering (CF) methods were introduced with the ability to recommend items to users

based on other users’ preferences and item interactions, addressing some of the content-based

shortcomings, namely the overspecialization and feature dependence aspects [15].

Memory-based CF still requires the designation of a similarity measure. Cosine and Jaccard

similarities, the Pearson correlation coefficient, or values obtained with co-occurrence methods, in

which item similarity is proportional to sequential interaction proximity, are often used. Item-to-

item approaches use these measures to compare item profiles, which are given directly by their

corresponding utility matrix interaction score vectors (columns, following the previous definition for

R) instead of the previously considered feature-based embeddings. The prediction of an interaction

value for an unknown user-item pair consists of first retrieving a given number of other itemsmost sim-

ilar to the relevant item from the user’s previous interaction set, usually accomplished with clustering

or nearest-neighbor techniques. The user’s interaction scores on those items are then combined with

an averaging method to obtain the final value. Item-based strategies have been shown to outperform

the alternative dual user-to-user processes, where predictions are derived from the preferences of

most similar users instead [16].

The need to predict a large number of interaction scores to produce recommendation lists, using

expensive pairwise similarity computations in sparse high dimensional spaces results in scalability

issues. This led to the wide adoption of the more efficient and flexible latent factor models, which

also make use of previously neglected interdependencies among users and items.

Latent factor models Popularized during the Netflix Prize competition [17], a pivotal event for

recommender systems research that took place between 2006 and 2009, latent factor models such

as matrix factorization (MF) achieved considerably more efficient and better performing CF solutions.

Figure 2.1: Matrix factorization representation, adapted from [18]. Reconstruction of the utility

matrix R with the product of latent user and item matrices, P and Q respectively.
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The challenge, which consisted of accurately predicting the last few movie ratings for a set of

users, promoted the concept of utility matrix reconstruction, usually framed as a supervised learning

problem. A test set of known ratings is omitted, and the predictions over their values are compared

and optimized against the true withheld labels during training (in this case, minimizing the root-mean-

squared error (RMSE)).  MF tackles this problem with a singular value decomposition (SVD) variation

suitable for the sparse setting [15]. The process provides a low-rank utility matrix approximation given

by the product of two dense, lower-dimensional latent matrices representing the user and item space,

such that each item and each user is described by an embedding vector, as represented in Figure 2.1.

The latent matrices are generally optimized using a gradient descent method and new predictions

can be made by taking the dot product between the corresponding user and item embeddings.

Although the necessity for restrictive manual feature selection is removed in these approaches,

their inability to incorporate additional query and item information also results in the impossibility of

recommending new items, a clear drawback compared to content-based alternatives. Likewise, the

cold start situation regarding new user profiles is also not solved.

2.1.3 Hybrids

Still within the scope of the Netflix Prize, base MF solutions were rapidly modified to address

some of the drawbacks mentioned above. The inclusion of global and local effect modeling, with the

addition of specific biases, pointed towards the benefits of personalization. Methods such as SVD++

[19] generate new predictions with

r̂ui = µr + bu + bi + pu · qi, (2.1)

where µr is the overall mean item rating, bu is the rating deviation of user u from the global rating av-

erage, bi is the rating deviation of item i, and pu and qi are the respective user and item embeddings.

This form can be extended with supplementary terms providing content and neighborhood-based

factors, combining the advantages of both traditional approaches [20]. Other information can further

be used to solve recurring issues such as profile initialization with demographic or geographic data.

The incorporation of temporal signals in the updated timeSVD++ [21], which accounted for different

rating behaviors over time (including, for instance, the tendency of older movies to get progressively

higher ratings), became a crucial component of the model ensemble that ended up obtaining the

10% RMSE decrease required to win the competition [22], further promoting the idea of item utility

being highly variable and context-dependent.

Since then, MF extensions with pairwise ranking optimization and bayesian probabilistic concepts

[23, 24] have gone on to obtain even better results in the matrix completion setting. Subsequently,

the need for more flexibility in the modeling of additional, structurally variable features led to the de-

velopment of various architecture solutions including Factorization Machines [25], Gradient Boosting

Machines [26–28], Markov Decision Process models [29], and other hybrid strategies not explored in

this work, which focuses exclusively on deep learning applications (expanded in Section 2.3).

8



2.2 Biased explicit and implicit feedback

The perception of users’ interests on a platform is a defining aspect of the recommendation

process. Systems based uniquely on explicit feedback, requiring users to express their preferences

through likes, ratings or reviews, for example, promote sparser, hardly scalable environments since

most of the user activity is passive.2 Furthermore, users are also more likely to engage explicitly with

items at extremes of their satisfaction spectrum [11].

These constraints have shifted the research focus to the modeling and incorporation of the sig-

nificantly more abundant and easily collectible implicit signals in modern systems [10, 11]. This

information enables the creation of algorithms capable of leveraging noisy user engagement and

behavioral activity patterns such as clicks, views, purchases, and other interactions that indirectly

but more consistently reflect their preferences. Additionally, as mentioned in the last section, the

usage of these features is key to more accurately portray the circumstances defining the variable

item utility, providing good foundations for engagement eliciting strategies [10]. The notion of indirect

preference is important and stems from the fact that true item utility can only be guessedwhen dealing

with implicit activity. Clicks, for example, do not necessarily represent positive interactions (although

they can be accounted as such depending on the recommendation objective) as users might click

items aimlessly or out of curiosity only to find them to be uninteresting after the fact. It is known

that the complexity of the decision-making process, influenced by past behavior, present context,

and the user’s objectives might lead them to interact without awareness as to why exactly [8]. The

necessity for robust models is extended by the possible intent changes during sessions, attention

drifts and lack of negative feedback supporting the prediction of future interactions which all add to

the challenge surrounding recommendations.

User interaction data is also inherently biased towards the system in which the interactions took

place, causing feedback loops when used to train new models [30–33]. For instance, users are

more likely to click higher-ranked items sometimes independently (to a certain degree) of their actual

interest in them or of the query context. This type of bias is only one of many, most of which are

unknown, variable, unpredictable, and exacerbated by data collection limitations and unobservable

factors. As expressed in [34], the best way to deal with such biases is still an open question.

In regard to the mitigation of presentation bias, a possible approach consists in the input of the

presented items’ positions to the model as a feature, with this information being removed at testing

(either using an out-of-vocabulary token or, more typically, by selecting every item to be at the top

position at serving) [34, 35]. Decreasing theweight of highly reachable item interactions in training and

considering only sporadic clickstream information as test data to reduce the impact of bias towards

popular items is also proposed in [33]. The impacts of these changes are, however, hard to evaluate

offline and their study is more suitable for online settings where A/B testing is possible.

2The explicit interaction distribution is usually long-tailed, with a small portion of the users being responsible for most of

the contributing likes, ratings, reviews or survey answers.
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2.3 Related work

As companies began gravitating towards engagement and retention maximization objectives over

rating RMSE-based solutions, the matrix completion formulation3 started to be put aside in favor of

learning to rank-oriented approaches [36]. Offering more flexibility, these methods generate ranked

predictions of K items most likely to be interacted with in the near future or after a given action

(top-K), with the rank being determined by probabilities, absolute or relative values, taking into

account the factors discussed in the previous sections. Most modern recommenders tend to adapt

the framework represented in Figure 2.2, sometimes introducing a prior candidate generation phase

to filter larger item corpora and posterior re-ranking stages to further refine the recommendation

process (typically using more focused signals conditioned on previously ranked items that allow for

control over factors such as diversity, fairness, novelty and freshness4 [37]).

Candidate
generation
(optional)

dozens
(top-K) Refined top-K

recommendationRanking Re-rankingmillions
thousands/
hundredsItem

corpus

Usage of user/session history, context and item features

more refinedless refined

Figure 2.2: Modern recommendation framework, modified from [7].

The success deep learning has had in a wide variety of domains over the last decades, including

computer vision and natural language processing, has greatly influenced the architectures of rec-

ommender systems in recent years [6]. Its ability to model complex non-linear user-item interaction

patterns combined with the capacity to learn joint representations of multi-modal structured and

unstructured data [38], allowing for the incorporation of various contextual signals, have been major

contributing factors to the continuous increase of neural network-based state-of-the-art models.

2.3.1 Neural generalization of traditional methods

One of the most prevalent neural recommendation approaches consists in the generalization

of more traditional methods, such as those reviewed above. [39], for instance, replaced the inner

product, used to approximate interaction data entries in MF, with a neural architecture able to learn

an arbitrary function from the data. He et al. [40] expanded on this idea with a hybrid model that

combined a linear kernel generalized matrix factorization layer with a deeper non-linear architecture

to predict CF implicit feedback scores based on user and item input vectors. This joint-training of

3Important disadvantages include, for instance, sequential signal and variable context modeling difficulties due to single

user-item pair considerations.
4As with biases, the impact of these factors is more easily deduced in online settings, as some require trade-offs from

typical offline metrics (e.g., accuracy and diversity) [33].
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linear and non-linear structures had been previously introduced in the Wide & Deep model [41], which

input several raw and transformed continuous and categorical contextual features into a single layer

neural network - Wide - and a Multilayer Perceptron (MLP) - Deep - simultaneously, to learn both

memorization and generalization from low and high-order feature interactions. Following the same

basis, [42] complemented linear and deep neural structures with a parallel Factorization Machine-

inspired Compressed Interaction Network, allowing it to learn high-order feature interactions both

explicitly and implicitly at the vector-wise level.

Covington et al. [7] developed a two-stage system for large-scale recommendation which dramat-

ically improved A/B results at YouTube and strongly impacted some of this work’s processing and

modeling decisions. Its dual MLP-based structure consists of an extreme multiclass classification

with nearest-neighbors phase (candidate generation) followed by a more refined and contextualized

regression to produce a top-K video ranking based on watch time prediction scores. Nevertheless,

while much more informative than simply considering a single user-item interaction pair as in most

CF methods, the input of past interaction information provided limited sequential awareness with the

loss of temporal ordering, consequence of the interacted item embeddings’ averaging considered.

2.3.2 Sequential recommendation

The sequential recommendation problem [29, 43] encompasses methods that thoroughly explore

the temporal dependencies andmodeling of the evolving sequentially ordered implicit and explicit sig-

nals contained in user activity logs, leveraging information neglected by most traditional approaches

to aid in the prediction of future behavioral trajectories. Due to its unmatched sequence processing

ability in a variety of tasks, the use of Recurrent Neural Network (RNN)-based architectures in this

domain is naturally ubiquitous.

Sequence-based recommendation Settings where user profile information is available can exploit

both dynamic long-term user-specific attributes across sessions and short-term information to build

robust predictive representations.

Wu et al. [44] complemented low-rank factorization, which traditionally assumes static user and

item profiles, with individual RNN autoregressive architectures for both users and movies in a rating

prediction problem. This allowed the model to dynamically adapt to exogenous (award effect) and

endogenous (age effect) temporal changes, instead of in a purely reactive way, greatly outperforming

fixed bias-induced shifts. [45] used an alternative convolutional sequence embedding approach

to learn union-level sequential patterns with skip behaviors, something earlier Markov Chain (MC)-

based approaches, such as [46, 47], failed to accomplish. Unlike RNNs, for instance, MC models are

unable to capture intricate dynamics of more complex, longer dependency scenarios [29] and their

performance is also known to decline in sparse environments [43].

Focusing on context-aware recommendation, [48] developed a latent feature crossing technique

to counter the inefficiency of feedforward neural networks in modeling low-rank multiplicative rela-

tions. This technique was then used to introduce various contextual signals, a considerable amount
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of which temporal-based, into an improved RNN-based sequential YouTube recommender.

The tendency towards attention mechanism incorporation in the architecture of modern systems

is clear, and the benefits which span from increased recommendation interpretability to better se-

quential modeling are detailed in Section 3.4. [49], for example, modeled a hashtag recommendation

task as a multiclass classification problem, based on tweet topic representations learned by a Long-

Short Term Memory (LSTM) with pre-trained word vectors. The last LSTM hidden state was used to

attend over the input sequence and attribute different contribution weights to each word, achieving

better results than pooling methods.

Although they fall outside the scope of this thesis, recent works such as [34, 50] have begun

tackling multi-objective recommendation with attentional mixture-of-expert models, capable of lever-

aging different temporal ranges and dynamics depending on the request context to deal with short-

term and long-term dependencies and predict independent probabilities for different possible user

actions (FW.1). Newly proposed solutions that drop the need for recurrent units in favor of attention-

only (transformer-based) models are also extremely promising and constitute the most recent shift in

recommender research [51–54] (FW.2).

Session-based recommendation Sparser session-based settings, such as the one studied in this

work, where individual user information is limited or completely unavailable and cold-start scenarios

are frequent (greatly limiting the performance of user-dependent neighborhood and matrix factor-

ization methods), have been shown to benefit significantly from short-term intent representations

derived from implicit sequential interaction patterns.

Hidasi et al. [55] created the foundation for top-K next-item session-based neural recommenders

by introducing a second order RNN architecture with negative output sampling to manage the large

output space in the RSC15 clickstream dataset [56], GRU4Rec. Gated Recurrent Units (GRUs)

were found to outperform the more complex LSTM units with numerous one-hot encoded item ID

input sequence variations. The specialized pairwise ranking loss functions introduced in their work

were later found to promote vanishing gradients and were modified in [57], which also showed a

comparatively good performance from an altered categorical cross-entropy log loss. Tan et al. [58]

further improved the GRU-basedmodel with embedding dropout, an adaptation to temporal changes

and data augmentation and processing techniques that were also implemented in this work. A direct

embedding output similar to that of [7]’s in candidate generation was proposed with cosine similarity

instead but a high-dimensional softmax cross-entropy approach was still found to perform better.

[59] developed a hierarchical RNN model, in which a top-level predicts initializations for a lower-level

GRU modeling the sequential session information. If user identifiers are available, the top-level can

easily relay the evolution of each user’s interests over time and across sessions.

Simultaneously, the incorporation of additional context features besides past item ID interaction

sequences has also shown to be crucial in session-based recommendation, leading to performance

gains over the last mentioned solutions. [60] developed an architecture with three parallel GRU-

based structures to process item IDs with descriptive image and text feature vectors simultaneously.
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Smirnova and Vasile [61] proposed a conditional RNN model and considered supplemental temporal

and event type features, with different stage context injection at the input, unit dynamic and output

structural levels.

As in sequence-based settings, works including [62, 63] have consolidated the importance of

attention in the more challenging session-based environments. Because interest drifts that lead to

redundant clicks are relevant in shorter timespans, [62]’s hybrid attentional encoders (with global

and local focus) emphasize the user’s main session purpose in item click sequences, producing a

unified session representation used to compute click probabilities for available items, trained with

a categorical cross-entropy loss. Liu et al. [63] built upon this solution, introducing higher attention

dependency with a memory priority model, more capable of deriving user intent from smaller ses-

sions. The use of transformers has started to become equally central in these domains, with [64], for

instance, outperforming previous recurrent non-attentional approaches in next-item recommendation

(FW.2).

2.3.3 Difficulties and limitations

Most modern recommendation approaches, including the ones mentioned earlier in this section,

are concerned with the production of ranked item lists from the entirety or majority of the item corpus,

corresponding to the first ranking stage of Figure 2.2. This objective differs from that of the challenge

studied in this work (Section 1.2), resulting in the inability to directly compare the presented methods

to the developed solution. The item list conditioning experienced by the re-ranking process can be

easily lifted, and adaptations to the high-dimensional output space, using hierarchical softmax [65],

negative sampling [66], or output embedding generation with nearest neighbors [7, 58], for instance,

can be quickly implemented. However, unlike in the prevalently studied e-commerce domain, where

inter-category product exploration can occur in an almost frictionless manner, the travel domain’s ex-

treme location dependence combined with the lack of item-specific location metadata in the RSC19

dataset prevented full corpus-based tests.5

Nevertheless, problems in recommender systems research extend far beyond these unaligned

objectives. The large variety of public and private datasets with endless variations, evaluationmetrics,

validation procedures, and baselines used in the field has left researchers struggling to measure

progress, questioning state-of-the-art advances. Recent works, including [67], have found that

the lack of standardization and solid benchmarking has led to most datasets only being equally

considered in a very small amount of relevant papers.6 Metrics defining the performance of de-

veloped algorithms can range from the traditional information retrieval Precision and Recall to the

Normalized Discounted Cumulative Gain (NDCG), Mean Average Precision (MAP), Click Through Rate

(CTR), and the previously introduced RMSE and MRR, among others [33, 67]. These, matched with

another assortment of validation processes, are often chosen based on past usage without additional

5In most cases, it would not make sense for hotels in Dubai to show up in a London-based search session. Furthermore,

in RSC19, the same items can appear associated to dozens of different search cities, complicating location-based grouping.
6Some of the most popular benchmarking datasets, such as MovieLens, consist of explicit interactions but are often used

to evaluate implicit-based algorithms without clearly defined objectives apart from increased accuracy.
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justification, usually with also arbitrary list cutoff sizes (for example MRR@K, for which only the K

top-ranked items are considered). Most importantly, maximizing offline user-centric objectives such

as CTR might not even reflect the intended business-centric purposes of the system (i.e., additional

revenue) [33]. After the Netflix Prize, for instance, Netflix’s priorities rapidly changed as they realized

that there are much better ways to recommend videos than “focusing only on those with a high

predicted star rating” [11].7 The challenge’s contribution to their recommender had also mostly been

limited to the resulting matrix factorization advances, as the accuracy gains of the winner solution

were deemed not being justifiable of the engineering effort needed to apply them in a production

environment [68]. Likewise, YouTube preferred a general unified deep learning pointwise system

over more complicated ensemble or better offline performing systems for efficiency and scalability

reasons [7]. Furthermore, crucial hyperparameter optimization process information is usually omitted,

with its code and that of data preprocessing, validation, evaluation, and baseline implementations

being rarely shared, resulting in serious reproducibility issues that hinder the comparative process

[67, 69].

Deep learning applications are also affected by these drawbacks and the subfield’s lack of direc-

tion is concerning. [67, 69, 70] found that “computationally and conceptually” simpler alternatives

including association rule, nearest-neighbor, and even popularity aggregator methods could outper-

form algorithms such as NCF [40] or base GRU4Rec [55].8

7Netflix’s focus shift towards recommendation diversity, user awareness, explainability, social integration and freshness

was in great part driven by their business model change from DVD mailing to streaming [68].
8Although in offline conditionsmore comparable to data science competitions where popularity bias, small corpus coverage

and scalability issues inherent to most can be disregarded.
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Chapter 3

Deep Learning

The various attempts to emulate the human brain’s plasticity, cognitive learning and pattern

recognition ability, among others over the years, resulted in the development of numerous promising

algorithms and computational structures. Although still inspired by the biological neuron’s architec-

ture, interconnectivity, and segmented specialization, the resulting artificial neuron-based models

diverged to pursue empirical evaluation performance improvement [71].

This chapter provides an overview of the machine learning subfield, specifically concentrating on

the different units and mechanisms used to develop the probabilistic classification recommendation

model explored in this work, in addition to the theory behind its learning and evaluation processes.

3.1 Multilayer perceptrons

The archetypal neuronal model developed by McCulloch and Pitts [72] was improved by the

perceptron [73], represented below in Figure 3.1, which first enabled the training of a single artificial

neuron, a unit whose output is a function of the learned biased weighted sum of a given input vector,

defined by1

y = g(w · x+ b), (3.1)

where x is the input vector, w is the trainable weight vector, b is the bias term and g is the, often

non-linear, activation function.

. .
 .

Figure 3.1: An artificial neuronal unit with n-dimensional input x and single output y.

In its strictest sense [74], the perceptron’s input is a binary vector and its activation function is a

1The dot product w · x ≡
∑n

i=1 wixi can also be written as
∑n

i=0 wixi, with x0 = 1 to incorporate the bias term.
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modified Heaviside step function2, g = H(·), enabling it to learn a binary linear classifier,

y =

 1 if w · x+ b > 0,

0 otherwise.
(3.2)

The term perceptron is, however, commonly used to describe similar architectures with real-

valued input vectors and different activation functions, some of which are displayed in Appendix

Figure A.1, such as the sigmoid neuron, g = σ(·), and the now more prevalent rectified linear unit,

g = ReLU(·).

Artificial neurons can be combined to form directed, noncyclic, weighted networks called Multi-

layer Perceptrons (MLPs), with each inter-nodal connection representing a coarse analogue to the

biological (neuronal) axon and dendrite-bridging synapses, and each corresponding weight sym-

bolizing the influence between end nodes. The most common way to arrange neurons is in fully

connected layer structures [75], where the output h(k) of a given layer k is a function of the preceding

one, h(k−1). Equation 3.1 can be generalized for an L−layer network with:

h(k) = g(k)(W (k)>h(k−1) + b(k)), (3.3)

where W (k) is the interconnection weight matrix and b(k) the bias vector, associated with layer k ∈

{1, ..., L} [38]. With this notation, h(0) corresponds to the input layer x, and h(L) to the output layer

y. A simple single hidden layer network is represented in Figure 3.2.

.  
.  

.

.  
.  

. .  
.  

.

Figure 3.2: A two-layer MLP (input layer not considered) with n-dimensional input x, single
hidden layer h(1) with p units, and m-dimensional output y. Neurons in adjacent fully con-

nected layers are fully pairwise connected but no interconnections exist within the same layer.

In general, although only one is represented in this figure, a network might have an arbitrary

number of stacked hidden layers with varying number of units.

An MLP defines a mapping y = f ′(x;θ) and learns the value of parameters θ, which comprise the

weightsW and biases b, that better approximate a given function f with a gradient-based optimiza-

tion process [38]. It is known that a neural network with at least one hidden layer and a reasonable

choice of non-linearity can approximate any continuous function on a compact input domain to

arbitrary accuracy, given sufficiently large number of units [38, 71, 76]. This universal approximation

2with H(0) = 0.
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property is, however, not enough to guarantee that the desired function is learned, as the challenge

relies on obtaining the best parameter values to model a given task (assuming properly representative

data), as is explored in the following sections of this chapter. Another powerful attribute of neural

networks is their ability to combine simple concepts and learn complex abstract representations from

raw, structured and unstructured data, alleviating the need for hand-designed features [38].

3.2 Recurrent neural networks

Neural networks are not limited to feedforward architectures characterized by the unidirectional

flow of information, such as that observed in MLPs. Recurrent Neural Networks (RNNs) introduced

cyclic connections (feedback loops) allowing for parameters to be shared across the model, con-

stituting an optimal specialized architecture to process sequential data [38, 76]. While traditional

fully connected MLPs attribute different parameters to each input feature, in RNNs the same weights

are shared across time steps3, allowing information to persist in its internal state. Specifically, most

RNNs calculate a hidden state h(t), at time step t, as

h(t) = f(h(t−1),x(t);θ), (3.4)

a function of the previous hidden state h(t−1) and the current input vector x(t), parametrized by

θ. Furthermore, the processing can be done on variable length sequences in a variety of different

structural design patterns, including those presented in Figure 3.3. This results in unprecedented

flexibility in the use of context information as these networks are able to learn to store and ignore

selective past information and recognize sequential patterns in the presence of sequential distortions

[77].

Feedforward RNN (a) One to many (b) Many to one (c) Many to many

Figure 3.3: Unlike the fixed-sized one-to-one mapping provided by MLPs, RNNs are able to

model tasks with sequential outputs (for example image captioning) (a), sequential inputs (like

sentiment analysis) (b), or both (machine translation, for instance) (c). This last many-to-many

setting can be expanded to output a vector at every input time step. Adapted from [78, 79].

Standard RNNs, however, suffer from a serious inherent long-term dependency flaw. The range

of past relevant context that can be accessed with these architectures is quite limited, due to the

tendency of gradients to either vanish or explode exponentially as they are propagated over many

3As expanded in [38], time steps need not denote the passage of time in the real world and might refer, for instance, to

the index positions of sequence’s input vectors. When specifically used with time-based sequences, the network may have

connections that go backward in time, maintaining causality given the entire sequence is observed beforehand [77].
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cyclic stages, providing little directional information to the cost function optimization (Section 3.3.3)

and leading to unstable learning, respectively [38, 77, 80]. To overcome this problem, second-

order4 unit (cell) architectures such as the Long Short-term Memory (LSTM) [81] were introduced.

In LSTMs, the information can flow along a central cell state, regulated by three gating mechanisms

composed of self-connected memory cells (sigmoid neural network layers) and multiplicative units

[77, 78]. These gates provide in-cell continuous analogues of the write, read and reset operations,

allowing for the storage and access of information over long periods of time.

This work will focus on the application of Gated Recurrent Units, a simpler LSTM variant, found

to be better performing in most of the sequential recommendation literature [6, 43].

Gated Recurrent Units Gated Recurrent Units (GRUs) [82], represented in Figure 3.4, essentially

combine the LSTM’s forget and input gates into an update gate, and merge the cell and hidden states

[78]. The hidden state update, which results in the hidden state h(t) at time step t, given input x(t)

and previous hidden state h(t−1), is calculated with the following equations:

z(t) = σ(W z · [h(t−1);x(t)] + bz), (3.5a)

r(t) = σ(W r · [h(t−1);x(t)] + br), (3.5b)

h̃
(t)

= tanh(W h · [r(t) ◦ h(t−1);x(t)] + bh), (3.5c)

h(t) = (1− z(t)) ◦ h(t−1) + z(t) ◦ h̃
(t)
, (3.5d)

where the symbol ◦ denotes the Hadamard (element-wise) product and [· ; ·] the vector concatenation

operation. In Equation 3.5b, r(t) is the reset gate vector, which allows the hidden state to drop any

irrelevant past information and is used to produce a candidate state h̃
(t)

in Equation 3.5c. The update

gate, given by z(t) in Equation 3.5a, has control over how much the past and candidate hidden states

contribute to the current hidden state update given by Equation 3.5d.

1-

+

Reset Gate

Update Gate

Figure 3.4: GRU unit’s hidden state update at time step t, adapted from [78, 83].

4Second-order units include multiplicative interactions between internal states.
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3.3 Learning

In most machine learning algorithms, the learning process for a specific task is directly tied to the

interaction between a model and an optimization procedure to minimize a given performance-based

cost function over a dataset.

In a supervised setting, learning is dependent on several provided pairs of evaluated input points

x and respective label or target values y that constitute a training set Dtrain = {(x(i)
train, y

(i)
train)}ni=1 =

{(Xtrain,ytrain)}. In the particular case of a deep learning supervised classification task, the goal is

to drive a function f ′(x;θ) created by a neural network to approximate the classifier y = f(x), that

maps the known noisy data sample input points to the respective ground truth category labels, such

that the model is then able to predict the labels of new, previously unobserved data points [38]. This

is accomplished by defining a cost function, measuring the performance or compatibility between the

predictions and true labels, and optimizing it over the training set to find an optimal parameter vector

θ which jointly maximizes the mapping performance on a separate test set with the unobserved data

Dtest = {(Xtest,ytest)}, representative of the model’s generalization, after the learning process is

over [76, 77].

3.3.1 Probabilistic multiclass classification

A possible approach to tackle a classification task is to define the mapping created by the para-

metric network as a conditional probability distribution p(y|x;θ). To represent this probability distri-

bution over K possible target classes, for the specific case of multiclass classification5, the network

can be constructed to output a prediction vector ŷ, with ŷi = P (y = i|x;θ), ŷi ∈ [0, 1] and
∑

i ŷi = 1,

using a final (K−unit) linear layer z followed by the softmax activation function:

z = W>h+ b, (3.6a)

ŷi = softmax(z)i =
exp zi∑
j exp zj

, (3.6b)

where zi = log P̃ (y = i|x;θ) consists of unnormalized log6 probabilities and y, i ∈ {1, ...,K} [38].

3.3.2 Cost function

Most neural networks are trained using the principle of maximum likelihood [38]. That is, an

estimation for the parameters θ is obtained by maximizing the likelihood L(θ|y,X) = p(y|X;θ):

θML = arg max
θ

P (y|X;θ), (3.7)

where the data points correspond to the training set, (X,y) = (Xtrain,ytrain). Assuming the training

examples to be independent and identically distributed (i.i.d.), this estimation can instead take the

5A one-vs-all multiclass setting is considered, where each sample is matched with a single possible output class.
6log denotes the natural logarithm.
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form of the minimization of a cost function J(θ), consisting of the negative conditional log-likelihood

expectation,

J(θ) = −Ex,y∼p̂data [log pmodel(y|x;θ)]. (3.8)

Minimizing Equation 3.8 corresponds to minimizing the cross-entropy (Equation A.7) between the

empirical distribution defined by the training set p̂data and the probability distribution defined by the

model pmodel [38].

With maximum likelihood estimation, the cost function for the multiclass softmax output defined

above, in Section 3.3.1, can be obtained by substituting Equation 3.8’s probability distribution with

Equation 3.6b, evaluated at the label index y,

J(θ) = −E[log softmax(z)y]. (3.9)

While dedicated ranking cost functions exist to optimize directly for the ranking task via predicted

output scores, classified as pointwise, pairwise and listwise in the learning to rank framework [36],

they were not directly explored in this work (FW.3). Pairwise and listwise functions can be used to

potentially introduce more diversity into the recommendations but pointwise approaches are often

preferred for online serving due to greater efficiency and scalability [34]. The negative log likelihood is,

in essence, a pointwise cost function, but its definition with the softmax function efficiently introduces

useful listwise properties [57].

3.3.3 Gradient-based training

One of the challenges of training neural networks is that their non-linearity causes most cost

functions to become non-convex. Consequently, the cost function optimization process is usually

done iteratively, using gradient-based methods which do not guarantee optimal convergence [38].

Most often, a variation of Stochastic Gradient Descent (SGD) is used, which requires computing the

cost function’s gradient with respect to the parameters,

∇θJ(θ) =
1

m

m∑
i=1

∇θL(x
(i), y(i),θ), (3.10)

where the expectation from Equation 3.8 is written as an average of the per-example loss L, given,

in the multiclass case define above, by the negative log-likelihood from Equation 3.9,

L(x, y,θ) = − log softmax(z)y. (3.11)

The loss’ gradient with respect to the parameters ∇θL is calculated using backpropagation (back-

prop) [84]. A network’s forward pass for an input data point x returns the prediction ŷ = f(x; θ).

Backprop then obtains the gradients with respect to the weights and biases, ∇W (k)L and ∇b(k)L

respectively, by iteratively applying the derivative chain rule backwards through the network for all

the hidden layers, k = (l, l − 1, ..., 1), starting with the output loss gradient (error signal) ∇ŷL(ŷ, y).
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In RNNs, the gradients are calculated with backprop after first unfolding their computational graph,

with a slightly modified algorithm called backpropagation through time (BPTT) [38, 77].

SGD further assumes that the gradient is an expectation that may be approximately estimated

using a small set of i.i.d. examples at each step of the algorithm7, called a minibatch:

B = {(x(1), y(1)), ..., (x(b), y(b))}, (3.12)

where the minibatch size b is usually selected to be a power of two, with smaller values possibly

offering a regularizing effect [38, 85]. More specifically, starting with small, random initialization

weights [86], the gradient at each step is computed as

ĝ ← 1

b
∇θ

b∑
i=1

L(f(x(i);θ), y(i)). (3.13)

The parameter vector estimate is then updated by following the negative gradient,

θ ← θ − ηĝ, (3.14)

where η is the learning rate.

This algorithmic basis is used in various other optimization algorithms, such as the popular Adam

[87], which uses an adaptive learning rate and momentum strategy, improving convergence by more

efficiently avoiding local minima with an inertia-based motion through the loss space [77].

3.3.4 Bayesian hyperparameter optimization

Similarly to other machine learning algorithms, neural networks have hyperparameters that influ-

ence the algorithm’s behavior and performance, such as the previously introduced learning rate or

the number of layers and units. Unlike the network parameters θ, however, these hyperparmeters

are not learned during the training process and must be chosen a priori to maximize a given objective

function.

If tuned on the training set, some of the hyperparameters, especially those controlling the model’s

capacity, would tend to values that would consequently result in overfitting [38] (see Section 3.3.5).

To prevent the tuning or any decision about the model’s structure from impacting the overall gener-

alization evaluation, a set of unobserved data points, separate from the test set examples, must be

used. Therefore, the original training set is sub-divided into a new training subset used to learn the

parameters, and another subset used to update the hyperparameters based on the estimated gener-

alization performance of the model over its data points, called the validation set: {(Xtrain,ytrain)} =

{(Xsubtrain,ysubtrain), (Xval,yval)}.8

As the size of the available hyperparameter set grows, the need for automated tuning algorithms

7In traditional SGD (online learning) only a single example is used at a time.
8Generally, when a validation set is required, ‘training set’ refers to the resulting training subset and not the original unsplit

data.
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becomes more relevant over manual methods. A direct generalization of manual tuning is grid

search, which samples and evaluates all combinations of predefined sets of discrete values for each

hyperparameter, with a single hyperparameter varying at a time. The combination that yields the

best objective performance result is chosen after several iterations or when a convergence criteria is

satisfied, given the search space is not exhausted beforehand. Nevertheless, due to its exponential

computational cost growth with the increase in the number of hyperparameters, this method is

only suitable for simple hyperparameter spaces (preferably with available prior insight into what

range of values might achieve good generalization performance). Random search, in which the

hyperparameter values are randomly sampled from predefined continuous distributions that allow

for a broader exploratory range, has been shown to converge much faster to better results [88].

The gain in efficiency can become exponential in the common cases where the usually expensive to

evaluate objective function is unaffected by some hyperparameters. An additional alternative is to

use model-based optimization. Bayesian optimization [89], in particular, allows for information about

previously evaluated hyperparameter combinations to influence future sampling decisions and has

been shown to outperform random search in various settings, including highly conditional spaces9

[90].

Bayesian optimization Bayesian Optimization (BO) considers the problem of finding a global max-

imizer of an unknown objective function f :

x∗ = arg max
x∈X

f(x), (3.15)

where X is some possibly conditional design space of interest over which the input hyperparameter

configuration x is optimized. The continuous black-box function f is typically expensive to evaluate

and is assumed to only be observable through noisy point-wise observations

y = f(x) + ε. (3.16)

In this setting, the hyperparameter optimization involves designing a sequential iterative strategy

which successively maps previously collected data to following query points.

The a priori beliefs about probable values of f , before any data is observed, may be captured in

a prior distribution p(f). Given set Dn = {(xi, yi)}ni=1, a collection10 of input points x = x1:n with

corresponding noisy observations y = y1:n, and a likelihood model p(y|x, f), the prior may be written

p(f |x) and a posterior distribution p(f |y,x) representing updated beliefs about f after observing the

data can be inferred using Bayes’ rule (A.3):

p(f |y,x) = p(y|x, f)p(f |x)
p(y|x) . (3.17)

The denominator normalization term p(y|x), called the evidence or marginal likelihood distribution,

9Spaces with hyperparameters dependent on particular conditions or on the values of other (parent) hyperparameters.
10The set notation zi:j = {zi, ..., zj} from [89] is used.
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can be obtained by marginalizing (A.1) f out of the numerator, with the usually intractable integral

p(y|x) =
∫
f

p(y|x, f)p(f |x) df. (3.18)

Gaussian processes Gaussian processes (GPs) [91] are non-parametric models GP(µ0, k), fully

characterized by their prior mean function µ0 and positive-definite kernel, or covariance function,

k, commonly used to obtain the posterior distribution, inferring confidence intervals on f [89]. GP

inference assumes that the objective function values f(x) = {f(x1), ..., f(xn)}, associated with the

previously defined n inputs x, are random variables, such that any finite collection of which is jointly

Gaussian [91, 92]. That is, with a GP on f ,

f(x) ∼ GP(m(x), k(x,x′)), (3.19)

defined by mean and kernel functions

m(x) = E[f(x)], (3.20)

k(x,x′) = Cov(f(x), f(x′)), (3.21)

the prior distribution conditioned on the inputs is given by

f(x)|x ∼ N (m(x),K(xi,xj)), (3.22)

or expanded, 
f(x1)

...

f(xn)

 ∼ N


µ0(x1)

...

µ0(xn)

 ,


k(x1,x1) . . . k(x1,xn)

...
. . .

...

k(xn,x1) . . . k(xn,xn)


 . (3.23)

The prior mean function is assumed to be constant and equal to zero from this point forward,m(x) =

0, as is often done in the literature.

The prior described above is chosen because it is also assumed that the noise associated with an

observation (from Equation 3.16) is given by an i.i.d. zero-mean Gaussian, ε ∼ N (0, σ2
noise), yielding

the likelihood model

y|x, f ∼ N (f(x), σ2
noiseI), (3.24)

where I ∈ Rn×n is the identity matrix. It follows that the prior is conjugate11 [76, 91] and the

numerator’s joint distribution fully defines the posterior, which is given by another Gaussian process

p(f |y,x) ∝ p(y|x, f)p(f |x), (3.25)

f(x)|x,y ∼ GP(mpost(x), kpost(x,x
′)). (3.26)

11The prior is said to be conjugate for the likelihood function if the posterior distribution is in the same probability distribution

family as the prior, which is true in this case as the product of two Gaussians gives an unnormalized Gaussian (Equation A.12).
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Given an arbitrary test point x∗, the joint distribution of the marginalized observed target values

and the function value at the test location under the prior can be written as Equation A.9, where the

prior on the noisy observations is defined by Cov(y) = K(x,x) + σ2
noiseI due to noise independence,

 y

f(x∗)

 ∼ N
0,

K(x,x) + σ2
noiseI K(x,x∗)

K(x∗,x) K(x∗,x∗)

 . (3.27)

The posterior mean and kernel functions12 are then given by Equation A.11 and are subsequently

used to select the next query point xn+1:

µn(x∗) = K(x∗,x)[K(x,x) + σ2
noiseI]−1y, (3.28)

σ2
n(x∗) = K(x∗,x∗)−K(x∗,x)[K(x,x) + σ2

noiseI]−1K(x,x∗). (3.29)

Kernel function The kernel function k defines the similarity between data points, under the assump-

tion that points with close input values are likely to have similar target values [91]. Consequently, it

also defines the structure of the prior functions considered for inference [89].

One of the most commonly chosen classes of kernel functions is the stationary (dependent on

xi − xj ) Matérn class [91], whose functions are given by

kν(xi,xj) =
21−ν

Γ(ν)

(√2ν
l

d(xi,xj)
)ν

Kν

(√2ν
l

d(xi,xj)
)
, (3.30)

with positive smoothness ν and length scale l parameters, where d(·, ·) is the Euclidean distance,

Γ(·) is the Gamma function and Kν(·) is a modified Bessel function. A typical choice for ν is 5/2 as

used in [90], for which the functions are neither too rough (lower ν values) nor too smooth (higher ν

values) and take the simplified form

k5/2(xi,xj) =
(
1 +

√
5

l
d(xi,xj) +

5

3l2
d(xi,xj)

2
)

exp
(
−
√
5

l
d(xi,xj)

)
. (3.31)

The length scale l is generally tuned by maximizing the log marginal likelihood (Equation 3.18), for

which the Gaussian process model provides an analytical expression (type-II maximum likelihood)

[89], but the process will not be explored further in this work. Also not explored was the possible

usage of conditional kernels, which Lévesque et al. [90] introduced to obtain better optimization

performance in conditional hyperparameter spaces (FW.4).

Acquisition function Instead of optimizing f directly, an easier to evaluate acquisition function αn

is chosen to define a strategy that maps the GP model to the next query point xn+1,

xn+1 = arg max
x∈X

αn(x;Dn), (3.32)

12The functions generalize to arbitrary inputs with mpost(x) = µn(x) and kpost(x,x′) = σ2
n(x,x

′).
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based on the obtained posterior mean µn(x) and kernel σ
2
n(x) functions, given by Equations 3.28 and

3.29, respectively. This strategy tries to greedily obtain information about f ’s maximum by attributing

an exploration bonus to under-explored (high variance) regions [93].

The Gaussian Process Upper Confidence Bound (GP-UCB) algorithm [94], in which the acquisition

function is given by,

αn(x) = µn(x) + β1/2
n σn(x), (3.33)

essentially an upper bound over the posterior controlled by the hyperparameter βn [93], is commonly

used. βn functions as a tradeoff factor between exploitative (focus on µn(x)) and exploratory (focus

on σn(x)) optimization behavior [95]. As in the kernel function’s case, this specific hyperparameter’s

tuning process is not explored.

The iterative process The overall iterative hyperparameter set optimization process detailed through-

out this section is summarized in Algorithm 1.

Algorithm 1: Bayesian Optimization with Gaussian Processes, adapted from [89, 90].

1 D1 ← ∅ . An initial collection of points can be used instead of an empty set

2 for n ∈ 1, ..., N do

3 fit GP on observations to obtain µn(x), σn(x)
4 select new hyperparameters xn+1 by optimizing acquisition function α,

xn+1 = arg maxx αn(x;Dn)
5 query objective function to obtain yn+1

6 augment data Dn+1 = {Dn, (xn+1, yn+1)}
7 update statistical model

8 return model with best performing hyperparameter input

3.3.5 Regularization

The process of obtaining a good generalization performance on the test data is directly tied to

the representational power of the model and to its training optimization process. Representational

power or capacity encapsulates the amount of functions a given model can fit, which is proportional

to its structural complexity or number of free parameters [38, 71]. In general, if its capacity is too

large, a model can begin to fit noise instead of the intended feature relations and targets during

training, and the function it learns cannot generalize well to data it has not seen before, in a process

called overfitting. On the contrary, if the capacity is not large enough, the model underfits, meaning

it becomes overly biased and can not obtain a suitable fit for the training data, which results in a

similarly high test error, given the data was split properly.

The balance in obtaining both a small train error (given by the cost function) and a small gap

between the train and test errors can be managed with regularization. In fact, to avoid overfitting, the

application of regularization techniques in combination with higher capacity models is preferred over

less complex models, as their associated loss function has, generally, better valued local minima

(although their number can be much more substantial) [71].
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Various regularization methods exist, from parameter norm penalties that constraint and encode

priors into the weight values and penalize structural complexity (L2 and L1), to ensemble and noise

injection methods [38], and more recently, batch [96] and layer [97] normalization. In this work,

only early stopping and dropout were explored (FW.5). Proper feature representation, discussed in

Section 4.2.4, can have additional regularizing effects though less explicitly.

Early stopping One of the simplest regularization methods can be applied by removing a part of

the training set for use as a validation set to roughly estimate the model’s performance on the test

set during the learning process, as in the previous hyperparameter optimization section. When a

model’s representational capacity is enough to overfit the task, it is typically observed that while the

training error decreases continuously, the error on the validation set starts to increase after a given

point, signaling a loss in generalization. Early stopping consists in monitoring the validation error

and returning the parameter values that minimize it during training, after a predefined number of full

dataset pass iterations (epochs) without improvement over the lowest error value obtained.

The whole training dataset (without the validation set split) can then be used to train a re-initialized

model until this estimated best-valued iteration [38].

Dropout Introduced by Srivastava et al. [98], dropout consists in randomly removing a subset

of neurons (multiplying their outputs by zero) during each training forward/backward pass with a

hyperparameter probability pdrop [75]. This is equivalent to training an exponentially-sized ensemble

of all the parameter sharing sub-networks that can be formed by removing non-output units from the

underlying base network [38] and can also be a first-order equivalent to anL2 regularizer under certain

conditions [99]. Dropout is not applied during testing and the network’s output may be regarded as

the average ensemble prediction. To keep the network’s behavior well-defined the neurons’ outputs

must be scaled either during training or testing (inverted dropout) such that their expected output is

the same in both instances [71].

3.4 Attention mechanisms

Originally motivated by human visual selective focus, attention mechanisms are joint-trained with

a model and learn context vectors that weigh (attend to) different input elements based on their

relevancy to the respective prediction task [100]. As such, attention can be leveraged to improve

the interpretability of black-box models, enhance RNN memorization potential [101], and filter unin-

formative features from raw inputs, consequentially reducing the impact of noisier data [6]. These

factors have strongly contributed to the mechanism’s popularity among recent state-of-the-art rec-

ommendation approaches [29], whose implementations have been mostly derived from the following

works.

Bahdanau et al. [102] first introduced attention to sequence-to-sequence (seq2seq) [103] Neural

Machine Translation (NMT), allowing the encoder-decoder model to automatically search for parts

of a source sentence relevant to the prediction of a target word, without having to encode the
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source sentence into a fixed-length vector, a known bottleneck for longer sentences. Luong et al.

[104] further expanded this approach with global (which accounts for all source positions) and local

(only attends to a subset of source positions at a time) attention structures with dot product-based

alignment scores.

Instead of using different source and target sequences, attention can be computed on a sin-

gle sequence, inducing relations among its items. Self-attention was introduced in [105], which

adapted the LSTM’s cell architecture with an attention-based memory network to attend over input

sequences, improving the processing of structured inputs in language modeling, sentiment analysis

and natural language inference. It is common for these approaches to reduce the attention weights

to a single vector. In the classification setting, Yang et al. [106], for instance, applied two hierarchical

attention levels to attend over sentences and words in a document classification task. Both levels

attend according to a randomly initialized general joint-learned vector, with an adapted version of

[102]’s proposal. Their work demonstrated performance improvement over other complementary

RNNmechanisms (output max-pooling and averaging) even in shorter sequences, with the additional

insight into what sequence parts contribute the most to the classification decision.

More recently, Vaswani et al. [107] modified [104]’s dot attention to include a scaling factor, cre-

ating the basis for multi-head attention, the core block of the transformer architecture. Transformers

are purely self-attention based, meaning they do not require RNNs for sequence processing, and

their state-of-the-art results in NLP have inspired new applications in the recommendation space

with promising results [54, 64], though out of this work’s scope as had already been pointed in the

state-of-the-art Section 2.3 (FW.2).

Definition Let x = (x(1), ...,x(n)) denote a source sequence of length n, and y = (y(1), ...,y(m)) a

target sequence of lengthm. While the seq2seq terminology for source and target sequences is used,

inspired by [102]’s original implementation, any two sequences may be used. The source sequence

can be encoded into a forward source hidden state (annotation) vector
−→
h = (

−→
h (1), ...,

−→
h (n)) by an

RNN. A Bidirectional RNN (Bi-RNN) can instead be used to concatenate a backward hidden state

vector to the forward one, by also processing the sequence in reverse, generating the annotation

for item x(j), h(j) = [
−→
h (j)> ;

←−
h (j)> ]>, which contains summarized information of both preceding and

following items.13 The target annotations h̄ can be similarly generated.14

The attention mechanism outputs a weighted sum of the source annotations, the context vector:

ci =

n∑
j=1

αijh
(j). (3.34)

The attention weights αij represent the alignments of output-input item pairs (y(i),x(j)) [100]. They

define the influence each source hidden state has on each output with the softmax function (Equation

13Every annotation h(j) contains information about the whole sequence with a strong focus on the parts surrounding the

j-th item [102].
14The general structure of attention integration varies by task. In the case of [102]’s seq2seq model, for instance, the hidden

state h̄
(i)

for a word at target position i ∈ {1, ...,m} is conditioned on the attention output ci and given by a decoder network

such that h̄
(i)

= fdec(h̄
(i−1)

, ȳ(i−1), ci).
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3.6b),

αij =
exp (eij)∑n
k=1 exp (eik)

, (3.35)

eij = score(h̄(i)
,h(j)), (3.36)

where eij is given by a predefined alignment score method.15 The alignment score functions explored

in this work are present in Table 3.1.

Table 3.1: Explored attention alignment score functions. Weight vectors va, ua and matrices

W a,W b are jointly learned during the training process (biases were integrated into the weight

matrices). According to [106], ua can be regarded as a high level representation of a fixed

relevancy query to find the “informative sequence items” over the sequences, inspired by

memory networks.

Name Alignment score function Eq. Citation

Additive eij = v>
a tanh(W ah̄

(i)
+W bh

(j)) (3.37) Bahdanau et al. [102]

The score function is parametrized by a single

layer neural network.

Dot (General) eij = h̄
(i)>

W ah
(j) (3.38) Luong et al. [104]

Self (General) Variants of the presented above, where the target

sequence is either the input sequence, a learn-

able weight or non-existent.

- Cheng et al. [105]

Hierarchical ej = u>
a tanh(W ah

(j)) (3.39) Yang et al. [106]

Modified additive, where the attention weights

are reduced to a single vector αj = softmax(ej).
Dot (Scaled) eij = (W ah̄

(i)>
W bh

(j))/
√
dk (3.40) Vaswani et al. [107]

The expression above, where dk is the input

sequence’s length, follows from the modified

scaled dot attention usually represented with

Query (Q), Key (K) and Value (V ) sequence nota-

tion,α = softmax(QK>
√
dk

)V . In a self-attention set-

ting, they are either all the same,Q = K = V = h,
or different weighted projections of the input se-

quence. dk = |K|.

3.5 Evaluation

The performance of a machine learning algorithm on a given task can be evaluated from various

perspectives with different metrics that allow for comprehensive result analysis and easier model

comparison, such as the already defined ranking-based MRR (Equation 1.1), the regression-based

RMSE or classification accuracy, for instance. The following definitions are adapted from [38, 108].

In a classification setting, the classifier’s performance over K classes can be partly visualized

using a confusion matrix CK×K , where the rows represent true instance classes and the columns

represent predicted instance classes (or otherwise), i.e., cij corresponds to the number of observa-

tions of class i predicted to be in class j.

15In [102], eij = score(h̄(i−1)
,h(j)).
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For a binary case with positive and negative samples, as represented below, the main diagonal

entries correspond to the correct predictions, the true positives (TP) and true negatives (TN), while

the remaining antidiagonal entries correspond to the false negatives (FN) and false positives (FP) or

type II and I statistical errors, respectively.

True Positive 
(TP)

False Negative 
(FN), Type II

False Positive
(FP), Type I

True Negative
(TN)

Positive

Negative

Positive Negative

Predicted class

Tr
ue

 c
la

ss

Figure 3.5: Confusion matrix for a binary setting with positive and negative sample classes.

Accuracy From this matrix, the value for classification accuracy, corresponding to the proportion

of correct predictions from the total amount of samples, can be written as

Accuracy =
TP + TN

TP + FP + TN + FN
(3.41)

When in imbalanced settings with highly disparate proportions between classes, however, ac-

curacy values might be misleading (in certain problems, for instance, exclusively selecting the most

frequent class might return high accuracy values) and other metrics are required to better describe

performance [38].

Recall The model’s ability to find the positive instances can be evaluated using the recall, or True

Positive Rate (TPR), given by the fraction of actual positive class instances identified correctly:

Recall = TP

TP + FN
(3.42)

Precision Precision, the ability of the classifier not to label a negative sample as positive, is given

by the fraction of correct positive predictions:

Precision =
TP

TP + FP
(3.43)

F1-score Recall and precision can be combined to form the F-score metric. Specifically, with equal

contributions from both, given by their harmonic mean, the F1-score is obtained:

F1 = 2 · Precision · Recall
Precision + Recall

(3.44)
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Multiclass metrics While accuracy can be given more generally by

Accuracy =
1

N

N∑
i=1

1(ŷi = yi), (3.45)

the remaining metrics presented above can be extended to the multiclass setting by considering

individual binary cases for each class and averaging the results to obtain an overall performance

value. Different averaging methods16 can be used depending on the objective:

• Macro averaging - unweighted mean of the individual binary metrics, tends to over-emphasize

infrequent class performance. Macro recall is known as a type of balanced accuracy in the

literature.

• Weighted averaging - accounts for class imbalance by weighting each binary metric in the

average with the corresponding class support (number of class samples), thereby favoring the

most frequent classes. Weighted recall corresponds to the classification accuracy.

16Micro averaging is sometimes also mentioned, weighing each sample-class pair equally. Its value for recall, precision and

F1-score is the same and corresponds to the classification accuracy.
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Chapter 4

Methodology

This chapter defines the framework used to tackle the proposed recommendation objectives,

encompassing the data and feature processing implementation methodology, followed by the model

generation process based on the previously defined methods and architectural units from Chapters

2 and 3.

General processing implementation was done in P y t h o n 3 . 7 . 7 , on a 6-core 2.6GHz i7, 16GB

RAM machine. Model implementation was done in machine learning library T e n s o r F l o w 2 . 3 . 0

[109] and training was executed on Google Colab’s free GPU mode with approximately 12GB RAM,

subject to dynamic usage limits.1

4.1 Problem formulation

The re-ranking of the accommodation impression lists required by the challenge can be framed

as a supervised learning, multiclass classification task solving the implicit click prediction surrogate

problem introduced in Section 1.2.

To predict the clicked item’s position at any given click event in a user session y, a deep learning

model was designed to generate an array of click probabilities ŷ for the displayed impression list

items, leveraging previous session-based sequential behavior signals and numerous types of ad-

ditional context as input, further detailed in the following sections. These probabilities are used to

calculate the negative log likelihood cost (NLL), with the maximum value’s index contributing to the

classification evaluation with the metrics introduced in Section 3.5. The ranking performance is given

by the MRR of the sorted probability indices, yrank, as shown in the high-level modeling process for

a session sample input displayed in Figure 4.1.

Formally, let S = (e(1), ..., e(n)) ≡ (e(τ))nτ=1 denote an arbitrary user session with n sequential

events. Each of these events consists of an interaction a, from the ten possible types previously

introduced in Table 1.2, with a reference item i at time t contextualized2 by c, such that the τ th event

can be represented as the tuple e(τ) = (a(τ), i(τ), t(τ), c(τ)). In particular, a single session contains

1Including alternating allocation of Nvidia K80s, T4s, P4s and P100s, limited idle and virtual machine session time with

restricted GPU and disk memory. In h t t p s : / / r e s e a r c h . g o o g l e . c o m / c o l a b o r a t o r y / f a q . h t m l , last acc. 2020-02-03.
2For simplicity, c corresponds to a vectorial proxy for different time-dependent and independent contextual signals.
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Figure 4.1: High-level simplified modeling process for the eight event session sample (sub-

session) s. Event action icon legend available in Figure 1.1. The model outputs a vector ŷ
with the click likelihood for each of the classes, which, in this case, consist of impression list

k(1)’s six item positions. A generalized transformed context input is represented, consisting

of dynamic and static signals captured up to the click event’s timestamp t(8) (unknown in the

prediction), a combination of features explored in Section 4.2. The click probability vector is

sorted to produce a position rank vector ŷrank. Since the predicted rank for the ground truth

label y is 4, the Reciprocal Rank for this example is 1/4.

a subsequence of w ∈ {1, ..., n} click events, (e
(τh)
h |a(τh) = clickout)wh=1, with e(n) = e

(τw)
w , i.e., the

last session event corresponds to a click. Click events are crucial to the problem as they contain

the impression lists presented to the users, k(h) (for every arbitrary e
(τh)
h ), which in turn hold the

targets. Based on these, the model was trained to produce a sequential prediction for what item in

the impression list is clicked at t(τh)+ε, where ε is a small time interval, by calculating click probabilities

for each one, ŷ(h) = P (y(h) = k
(h)
p |x(τh),θ)p=1,...,|k(h)|, as noted above.

To leverage every click’s information, the training set was augmented with a vectorized imple-

mentation of the method used in [58, 62, 63], such that every session produced w − 1 additional

subsessions (training samples) containing the events preceding each of the w session click events,

s(l) = (e(τ))τlτ=1, represented below in Figure 4.2.

.  
 . 

  .

/ Past/Future Clicks

Other Past Interactions

Event types

Figure 4.2: Augmentation process for session S, which generates w − 1 new subsessions

{s(1), ..., s(w−1)}, (s(w) = S), based on the w click events, each associated with the corre-

sponding impression list k(h).

The process described above was repeated for every session S
(j)
∀j∈N in the dataset D, for which

the session axis had been omitted in simplification.
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4.2 Data processing

In most data-driven tasks, the processing phase ensures the creation of proper complete input

representations, on which the performance of predictive machine learning algorithms is highly depen-

dent [38, 77]. This section encompasses the rationale behind the development of the recommender’s

input X, consisting of relevant features generated and extracted from the raw activity log dataset,

such that the contextual signals and patterns depicting user intent are captured efficiently.

The P a n d a s 1 . 1 . 0 data analysis library was used for datamanipulationmainly due to its inclusion

of DataFrames: structured multidimensional multi-labeled arrays that allow for heterogeneous data

storage and database operations [110].

Display notes The mean and outlier3 values for the distribution box plots presented in Figures

4.3, 4.4, 4.6, 4.7, 4.13 and 4.14, are represented by triangular and circular markers, respectively.

Throughout the following sections, items presented in colored text boxes correspond to generated

or extracted f e a t u r e s .

4.2.1 Preprocessing

The initial preprocessing stage consisted of general data structural modification, cleansing and

filtering steps, mostly based on dataset exploration and visualization, as preparation for subsequent

feature-based operations:

1. Duplicate log entries were deleted.

2. Invalid click events, where the clicked reference was not present in the impressions list, were

dropped.

3. Helper counter features, s u b s e s s i o n (incremented at time steps following click events, reset

between sessions) and s u b s t e p (incremented at each time step, reset between subsessions),

were created, after sorting the data by time, to facilitate part of the subsession-based feature

generation, providing the foundation for the data augmentation method described in Section

4.1.

4. Sessions/subsessions without clicks were removed.

5. User sort interactions were incorporated as filter selections, with undefined reference values

being removed.

6. The original dataset’s event distribution was dominated by image interactions (Figure 4.3a),

which accounted for almost three quarters of the events largely due to similar consecutive

actions with the same references. So as to not overpower the interaction sequences, the

3Following m a t p l o t l i b 3 . 3 . 0 ’s default settings, the displayed plot outliers are defined as points with values less than

Q1 − 1.5 IQR and greater than Q3 +1.5 IQR, where Q1 and Q3 are the lower and upper data quartiles, and IQR = Q3 −Q1

is the interquartile range.
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data was looped over to group these consecutive actions into single events, generating a

f r e q u e n c y feature, corresponding to each group’s size, along with temporal endpoints -

the initial and final group events’ timestamps, respectively. This process had a major impact in

balancing the dataset’s action distribution displayed in Figure 4.3b.

(a) Original dataset action count.
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(b) Preprocessed dataset action count.

Figure 4.3: Original and preprocessed datasets’ event count by action type. Preprocessing

reduced the ratio of most to least frequent action count from rog = # i m a g e i n t .

# s e a r c h p o i
= 86.3 to

rpre = # i m a g e i n t .

# s e a r c h i t e m
= 9.8.

7. Finally, sessions and first subsessions with less than three events were dropped. The imple-

mentation of a minimum time step threshold is not uncommon in the literature. Normally, as in

[55, 61–63], sequences of length one are removed. In this case, while sequences of length one

would also only introduce unwanted stochasticity by training the model on clicks without much

relevant context besides that provided by the impression list characteristics, it was expectedly

noted that the first session time steps mainly consisted of more general exploratory action

types (Figure 4.4a), which when followed directly by a click would, once more, yield limited

recommendation support. This is more clearly visible in Figure 4.5, in which action counts

normalized for each time step, to account for the decreasing amount of interactions with the

increase in session size, were plotted for the first 25 time steps. Non-item specific interactions

like POI and destination searches or sort order changes demonstrate a decreasing relative

count trend as the session progresses, with the latter accounting for 40% of the first event’s

total interactions. Therefore, in an effort to enhance the model’s robustness, while still taking

into account the primarily small sized original dataset’s sessions (of which half had less than

four time steps according to Figure 4.6), this method ensured the existence of at least two other

actions with each click in every training example.
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(a) Original dataset action distribution by session

time step, zoomed in for clarity.

(b) Preprocessed dataset action distribution by

session time step.

Figure 4.4: Original and preprocessed datasets’ action distribution by session time step. The

distribution’s variance was reduced for most of the action types, with more exploratory-based

ones maintaining a higher density towards the beginning of sessions.

0.0

0.1

0.2

0.3

0.4
interaction item image clickout filter selection change of sort order search for destination

0 10 20
0.0

0.1

0.2

0.3

0.4
interaction item info

0 10 20

interaction item rating

0 10 20

interaction item deals

0 10 20

search for poi

0 10 20

search for item

0 5 10 15 20 25
Step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
or

m
al

iz
ed

 c
ou

nt

Action count normalized per step

Figure 4.5: Normalized action count per time step. The action count values at each point sum

up to one, showing the relative proportion of event types throughout a session. The sudden

decrease in value for most of the action types in the third time step is explained by the imposed

session/subsession size threshold.

The implementation of these preprocessing steps resulted not only in a less skewed distribution of

time steps at which actions occur (Figure 4.4b), but also, unsurprisingly, in a more even action count

distribution per session (Figure 4.7), expanding on what had been previously presented in Figure 4.3.

The click distribution, unaffected due to their required presence in every sample for the prediction

task, corresponds to that of subsessions per session for which the average count is two.
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Figure 4.6: Session size (in time steps) distribution comparison between original and prepro-

cessed datasets. The subsession distribution represented considered only non-overlapping

events (i.e., number of time steps between consecutive clicks, including the last click event;

using session S from Figure 4.2 as an example, the size value corresponding to subsession

s(2) would be 2).

(a) Original dataset action distribution by session,

zoomed in for clarity.

(b) Preprocessed dataset action distribution by

session.

Figure 4.7: Original and preprocessed datasets’ action distribution by session. Only ses-

sions containing the respective actions contributed to the distribution, hence the inexis-

tence of zero-valued data points. In reality, actions such as i n t e r a c t i o n i t e m r a t i n g ,

i n t e r a c t i o n i t e m d e a l s , s e a r c h f o r p o i or s e a r c h f o r i t e m were rarely present in

most sessions.

In the end, the original 910 683 user sessions were reduced by approximately 36% down to

332849, containing 660 526 samples and 2995184 events. Processed sessions remained relatively

small, with only 15% containing more than ten time steps, although their median event number

increased from four to six.
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4.2.2 Feature engineering

As mentioned at the beginning of Section 4.2, the predictive foundation necessary to model the

noisy interaction patterns requires the extraction of meaningful representations from the heteroge-

neous preprocessed dataset, such that each training sample’s information content is maximized [86].

Most data science competitions tend to promote feature engineering hyper-focus, with some of

the best performingmodels generally making use of hundreds or even thousands of different carefully

hand-designed and transformed inputs. While this might make sense when the emphasis is set on

achieving the defining decimal points in the required offline evaluation metrics, it usually comes at

the expense of real-life online applicability where generalization is important to keep up with rapidly

changing objectives and tasks, as exemplified by the Netflix Prize’s outcome [11].

In this work, a different, more balanced approach was taken, combining deep learning’s knowl-

edge representation ability and input robustness with limited, theoretically important feature genera-

tion focused on cross-domain information availability, based on literature guidelines. These features

should help propagate important content and CF-based signals, while providing different types of

contextualization surrounding the relevant click events, improving personalization and relieving the

need for the model to learn the corresponding relations by itself [111]. Their performance impact

was partly relayed to the optimization process, discussed in Section 4.3.1. The objective was to

create a suitable modular baseline, which can then be complemented with additional multi-modal

information in the future, without the need for ensemble training, and that can be easily adapted to

different ranking tasks with minimal intervention.

The feature set was divided into three main different categories and two additional subcategories

(expanded in Appendix Table B.1) according to their characteristics and behavioral structure across

training examples:

• Interaction sequence features,Xseq ∈ Rnseq×mseq , model dynamic sequential information across

a session leading up to a given click event;

• Session features, Xses ∈ Rmses , consist of static context signals that define each session/sub-

session sample;

- Filter features, Xfilt ∈ Rdfilt , comprise subsession-based search and sort filters selected

by the users;

• Impression features, X imp ∈ Rnimp×mimp , describe and summarize properties and interactions

for the impression list’s items at every click;

- Metadata features, Xmeta ∈ Rnimp×dmeta , contain additional impression characteristics

retrieved from the metadata database.
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The sample axis was omitted such that the presented dimensions correspond to those of a single

sample: nseq is the maximum number of interacted sequence time steps, mseq is the sequential

feature space dimensionality; mses is the session feature space dimensionality, including the filters’

embedding dimension dfilt (if active); nimp is the maximum number of impression list items and

mimp is the impression feature space dimensionality, including the metadata attributes’ embedding

dimension dmeta (if active).
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Figure 4.8: Number of sessions per user in the preprocessed dataset with multi-session value

aggregation.

The inability to use additional, more specific, user-based features to aid in the recommendation

task due to the overwhelming majority of single session users, one of the defining characteristics

and biggest obstacles of session-based settings, can be observed in Figure 4.8. Nevertheless, the

exploration of user-centered signals constitutes an interesting future work research topic for less

sparse sequential recommendation, as the combination of long and short-term dependencies can

be easily integrated into the model presented in the following section, allowing for an added layer of

insight and personalization (FW.6).
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Figure 4.9: Imbalanced clicked item position distribution. Lower rank is equivalent to higher

layout position.
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Another fundamental dataset challenge concerns the impact of presentation bias (Section 2.2) on

the distribution of clicked impression item positions, corresponding to the target labels, represented

in Figure 4.9, resulting in a heavily imbalanced classification problem. Figure 4.10 additionally shows

that this bias towards top ranked items is aggravated by shorter preceding interaction sequences,

with almost a third of all clicks for sequences of length two occurring in the highest list position.
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Figure 4.10: Normalized clicked impression item position distribution by past interaction

sequence length.

Sequential features

The interactions leading up to the click events constitute the basis of users’ preferences and

provide insight into their purposes across sessions. As discussed in Chapter 2, the complexity of

the intricate sequential pattern modeling task is aggravated by an array of factors including different

relative interaction importance [45, 50], the events’ implicit nature, the possibility of session intent

change over time [44, 58, 62], and the sparsity of the domain defined by small windows of anonymized

activity. Although the limited six day data span prevented the study of longer-term temporal dy-

namics like seasonality and user/item trend-based signals, known to be worth considering in other

recommendation applications [44] (FW.7), the numerous short-term obstacles amplify the need for

contextualization, which the following features seek to provide.

The sequence of items IDs a user has interacted with in a given session, r e f e r e n c e i t e m I D ,

constitutes the core log building block, and is the sole input considered in most session-based next

interaction top-K models such as [55, 58, 62, 63].

Other features, namely the a c t i o n I D of each event, central in Section 4.2.1, and its time

s t e p were extracted directly from the preprocessed dataset, along with the f r e q u e n c y values

generated in Section 4.2.1.

Since different patterns of time gaps between past events were shown to have an important

impact in session-based next item selection likelihood [61], in addition to the time elapsed at each

time step since a given session’s inception, s e s s i o n t i m e (Equation 4.1a), the time delta between

interactions [48], t i m e d i f f e r e n t i a l (Equation 4.1b), was generated by looping over the dataset.
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This concept was further expanded to contain the time elapsed since the previous action of each

individual type with Equation 4.1c. For an arbitrary event e(τ):

∆t
(τ)
session = t

(τ)
end − t

(1)
ini , (4.1a)

∆t
(τ)
dif = t

(τ)
ini − t

(τ−1)
end , (4.1b)

∆t
(τ)
actdifq =


∑τ

j=(τΩq+1) ∆t
(j)
dif if Ω

(τ)
q 6= {∅, a(τ)},

0 otherwise,
(4.1c)

∆t
(τ)
action = t

(τ)
end − t

(τ)
ini , (4.1d)

∆t
(τ)
dwell = ∆t

(τ−1)
action +∆t

(τ)
dif . (4.1e)

In Equation 4.1c, Ω
(τ)
q stands for the previous action of type q with corresponding time step τΩq

< τ .

The difference between an event’s initial and final timestamps, tini and tend respectively (products of

the preprocessing frequency grouping), formed the a c t i o n t i m e (Equation 4.1d). Equations 4.1b

and 4.1d can then be combined to form the d w e l l t i m e (Equation 4.1e), as detailed in the temporal

subsession diagram of Figure 4.11. This diagram also alludes to the impossibility of calculating

t i m e d i f f e r e n t i a l and d w e l l t i m e features for the last subsession events, as that would

require knowledge of the following clicks’ timestamps, unavailable in a causal prediction setting.

?

?

Figure 4.11: Temporal feature detail for a subsession with three interactions preceding the

click event e
(4)
1 . Each of the events is delimited by its initial and final timestamps, t

(τ)
ini and

t
(τ)
end. ∆t

(1)
dif and ∆t

(1)
dwell are undefined by definition, since τ ∈ {1, ..., 4}. ∆t

(4)
dif and ∆t

(4)
dwell are

unknown for the click prediction problem as t(4) can not be accessed without future temporal

leakage, i.e., its use would result in a non-causal system.

To prevent data discontinuity, undefined values, such as differential and dwell times of first session

events or action differential times of events that precede first session events of a given action type,

were mapped to zero instead of an out-of-range value [112]. Additional binary feature vectors were

created to indicate value existence in these scenarios.

Lastly, the dataset augmentation process introduced in Section 4.1, tasked with organizing the

events into full subsessions, was finalized. The impossibility of iterating through the almost three mil-

lion rowDataFramewhile keeping track of session blocks, due to computational limitations, required a

vectorized approach capable of reordering and overlapping sequences without the need for memory-

consuming auxiliary variables. As was done in [58, 62], a sequence threshold was set at 25 time steps

preceding each click, given that 95% of the available sessions were smaller than this value, and
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due to additional padding considerations later discussed in Section 4.2.4.4 The developed solution

combined P a n d a s ’ integer location indexing with row indices output by the function v r a n g e 5, when

given starting subsession and click event indices respectively, generating the final sequential feature

DataFrame containing 6 066 328 event rows in 13.42s total runtime.

Session features

Regarding invariant subsession/sample features, the number of previous clicks in the session

given by the s u b s e s s i o n counter, the number of time steps since the previous session click

event s u b s t e p s , and aggregators for sequential features such as the total amount of session

interactions or time s t e p s , and the total s e s s i o n t i m e , were lifted from the preprocessed

dataset. These features and their corresponding sequential counterparts can provide helpful insight

to shape the output probability space. Expectedly, lower-ranked search page items (with higher

impression position) are often interacted with and clicked after those at the top, as supported by their

associated higher average previous click, time step, and session time values displayed in Appendix

Figures B.1, B.2, and B.3, respectively.

The variable number of possible output classes for each sample, defined by the impression list’s

length at every click, i m p r e s s i o n l e n g t h , was created. This feature’s value frequencies, plotted

in Figure 4.12, showed that less than a quarter of presented lists were smaller than the possible

maximum of 25.
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Figure 4.12: Log-scaled frequency distribution of impression list lengths.

As with demographic features in [7], the extremely location-dependent travel domain is likely to

benefit from geographical attributes, including the c i t y in which accommodation is searched for,

and the website p l a t f o r m region accessed by the user, to provide priors, especially important in

cold-start situations (i.e., clicks at initial session time steps without much added previous information)

and exploratory-driven event sequences. Besides, location differentiation is always crucial in global

4When combined with the augmentation procedure, the imposed time step limit essentially creates a rolling time-window

setup of maximum width 25 for each session.
5Function v r a n g e provided by Gareth Rees at h t t p s : / / c o d e r e v i e w . s t a c k e x c h a n g e . c o m / a / 8 4 9 8 0 , last accessed

on 2020-01-13.
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platforms as different markets and cultures are bound to also have different preferences, needs

and possibilities. An important aspect influenced by location is the pricing of available listings6,

as can be seen for the top ten most interacted cities of the dataset in Figure 4.13. The distribution

simultaneously shows the slight but generally present user gravitation towards cheaper items.

Figure 4.13: Comparison of clicked and available item prices for the ten most popular cities

(by interaction percentage). The pricing differentiation between regions is clear. For example,

hotels in New York City are, on average, two times more expensive than in Istanbul. The

average delta between mean clicked and available prices for these top cities is 29.14.

Supplemental general features, like the type of d e v i c e used by the user during the session can

provide similar benefits. As mentioned in [34], mobile devices are likely to experience drastic position

biases mostly due to smaller screen sizes. In this dataset, however, the difference is quite negligible,

as can be seen in Figure 4.14. Tablet navigation seems to experience the opposite effect with a mean

slightly shifted towards lower ranked item clicks than the remaining devices.
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Figure 4.14: Position of the clicked item by type of device used during the session.

6No currency unit was provided.
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Filter features F i l t e r s selected by users during the search process, directly related to the

items’ metadata attributes, are strong indicators of specific circumstantial interests.

The combined explicitly chosen filter selection and sort order change references demonstrate

how portions of user searches were widely influenced by factors such as listing price (sort by price -

the most chosen by far, best value), distance to a specific point of interest (sort by distance), rating (5

star, 4 star, sort by rating) and other characteristics (accommodation type, etc.), as can be observed

in Table 4.1. As such, the set of active filters and sort interactions at each subsession’s last time step

were jointly added to the sample’s session features.

Table 4.1: Selection distribution for the ten most chosen filters based on 654 984 total filter

interaction events.

Filter/Sort Selection frequency (%)

Sort by Price 25.01

Sort by Distance 8.18

Hotel 6.70

Best Value 5.48

5 Star 5.12

Resort 4.84

4 Star 4.76

Hostal (ES) 4.04

Motel 3.87

Sort by Rating 2.85

Impression features

Impressions are central to the problem as they define the interface of possible user interaction

outcomes in relevant predictive events. Descriptive item features, popularity indicators and interac-

tion aggregators for the variable length impression list presented to each user in a click event, that

condition and provide the most differentiation from typical top-K recommendation, were ultimately

found to be some of the most essential to the re-ranking task’s performance. Their generation also

proved to be one of the most laborious aspects of this work. The need to preserve the natural

temporal dynamic of user sessions and prevent future data leakage, combined with the required

tracking of each item’s values in and across sessions without the ability to use algorithmic loops due

to computational limitations required alternative vectorized implementation strategies.

The click events were first retrieved from the preprocessed dataset and the impression lists

were expanded, such that the presented i m p r e s s i o n i t e m I D s formed the row index of a new

impression-based DataFrame with 15 263 546 entries.

Besides the p o s i t i o n of each item (which might even be ambiguous given subsequent RNN

processing, when bias impact is not analyzed), their p r i c e , which has already been discussed as

being a key, interaction-driving characteristic, was also extracted from the logs. The click distribution

per price rank of Figure 4.15 confirms the heightened price sensitivity of the domain noted by trivago in
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[13] and also implied by the price-related top interacted filter in Table 4.1, displaying the expected user

bias toward cheaper accommodation (as had been briefly suggested when discussing the clicked city

prices of Figure 4.13).
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Figure 4.15: Clicked price rank distribution. Lower rank is equivalent to lower relative price

and ranks are share between same-priced items.

The aforementioned item-specific popularity and previous interaction signals were captured in

four additional features: v i e w s , representing the number of times each item had been in former

impression lists (which can be regarded as previous item views, under the assumption that every item

in a given list is viewed by the user), the number of past item c l i c k s and i n t e r a c t i o n s of other

distinct types, and the aggregate past d w e l l t i m e for each item (Equation 4.1e), as represented

in Figure 4.1. It was assumed that an interaction with a specific item persisted until the start of

another event with a different reference item. Each of these features was further subdivided into local

(session-based) and global (inter-session) components. While the latter were mainly used to provide

prior distributions, similarly to previous geographical and general session features, local variants were

integrated to provide a more focused summarized insight into the user’s session intent. Algorithm 2

represents the high-level pseudocode for the vectorized local and global d w e l l t i m e generation,

with a 317s total runtime.

For reference, a hybrid iterative and vectorized solution (with P a n d a s ’ i t e r t u p l e s and g r o u p b y )

to generate the muchmore straightforward c l i c k s , from the smaller sequential DataFrame (filtered

for click events only, with 660 526 rows), would take approximately 11 days to complete (at around

1.43s per click event)7.

7The fully vectorized solution generates c l i c k s in 389s, around 2443 times faster than the hybrid approach.
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Algorithm 2: High-level pseudocode for the vectorized dwell feature generation. The dwell

value for a given action reference item is only calculated in the following time step (Figure 4.1),

except if the next event is a click, which only provides initial context and not the completed

action information (relevant timestamp). A column b from DataFrame A is denoted by A : b .

Input: S e q u e n t i a l (S e q ) and I m p r e s s i o n s (I m p ) DataFrames, where each entry

corresponds to an interaction event and a presented impression list item, respectively.

1 S e q : c l i c k _ b i n aux ← binary column, 1 if a c t i o n = c l i c k o u t , 0 otherwise

2 S e q : c l i c k _ s u b s e s s i o n aux ← counter incremented with c l i c k _ b i n at each click event step,

reset between sessions

3 S e q : d w e l l _ r e f aux ← shifted action reference values to the following step (undefined for first

session event)

4 S e q : d w e l l _ v a l aux ← calculated dwell for each d w e l l _ r e f at every step with Equation 4.1e

. propagate values for interacted items over subsessions (global)/sessions (local)

5 S e q : s e q _ d w e l l ← cumulative sum over d w e l l _ v a l for each d w e l l _ r e f (l o c a l : reset

between sessions)

. fix and propagate values for viewed items with previous interactions

6 L a s t _ d w e l l aux and L a s t _ d w e l l _ c l i c k aux ← DataFrames with s e q _ d w e l l for the last

interaction with each d w e l l _ r e f for every s u b s e s s i o n and c l i c k _ s u b s e s s i o n , respectively

(with I m p ’s index)

7 delete last event from L a s t _ d w e l l _ c l i c k for every session (last session click values)

8 D w e l l _ g r o u p aux ← left merge L a s t _ d w e l l and L a s t _ d w e l l _ c l i c k

9 c l i c k _ d w e l l aux ← L a s t _ d w e l l : s e q _ d w e l l where a c t i o n = c l i c k o u t

10 replace L a s t _ d w e l l : s e q _ d w e l l values with L a s t _ d w e l l _ c l i c k : s e q _ d w e l l , where

a c t i o n = c l i c k o u t

11 left merge I m p and D w e l l _ g r o u p DataFrames

12 fill c l i c k _ d w e l l values forward in time for each impression list item (l o c a l : only inside each

session)

. account for consecutive click events

13 delete filled c l i c k _ d w e l l values in original non-filled locations (click values)

14 refill c l i c k _ d w e l l forward in time

15 d w e l l ← L a s t _ d w e l l _ c l i c k : s e q _ d w e l l where a c t i o n = c l i c k o u t

16 fill d w e l l values forward in time for each impressions list item (l o c a l : only inside each

session)

17 fill empty d w e l l values with 0

18 replace d w e l l filled values with c l i c k _ d w e l l filled values where c l i c k _ d w e l l > d w e l l

Table 4.2: Frequency contigency table for clicked item events (A) and local interactions events
prior to clicks (B).

Interacted Not interacted

B B̄

Clicked A 303404 357122

Not Clicked Ā 839106 13 763 914

The impact of local features on the recommendation task can be exemplified with the contingency

Table 4.2, containing the frequencies of presented clicked items (A) and presented items with pre-

vious session interactions (B). The conditional probabilities P (A|B) and P (A|B̄), i.e., the probability

of a sampled list item being clicked given that it had been previously interacted with in the session

and the probability of an item being clicked without any previous local interaction, respectively, are
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easily retrieved from the table using Equations A.1 and A.2:

P (A|B) =
303404

303404 + 839106
= 0.2656, (4.2a)

P (A|B̄) =
357122

357122 + 13763 914
= 0.0253. (4.2b)

These values show that a previous item interaction in the session substantially increases the click

probability, by over an order of magnitude.

The combination of some of these previous features, such as v i e w s and c l i c k s , can also

be important to introduce churn in the recommendation, a powerful mechanism that helps balance

the exploration/exploitation in engagement strategies [8], more relevant in user-based environments.

In [7], for instance, non-interacted features previously presented to each user are demoted in the

ranking (FW.6).

Although not available in RSC19, visual features decurrent from the page layout such as item

thumbnails, are known to be crucial user interaction influencers [7, 60], can be easily integrated into

the model’s architecture and joint-trained with, for instance, an additional convolutional input (FW.8).

Metadata features The static item attributes provided by the metadata database were expanded

into a DataFrame sharing the same item-based index structure of the remaining impression fea-

tures. Although limited (no geographic pointers, for instance), the characterization provided by these

features is important, especially when combined with active filters in a session, as not every item

presented to the user actually satisfies the required filter conditions. Additionally, as can be observed

in Table 4.3, some attributes also function as triggers for user interaction. The vast majority of

clicked items are naturally characterized by standard amenities such as shower or WiFi availability,

which are also present in the greatest accommodation share. When sorting by the ratio of clicked

to availability percentages (to take less frequent amenities into account), however, it is noted that

high-end attributes often lead to higher click probabilities.

Table 4.3: Metadata attributes sorted by presence in clicked items (left) and by clicked to

general availability ratio, rmeta = Click. %
Avail. %

, for a minimum availability of 1% (right).

Attribute Clicked (%) Avail. (%) rmeta Attribute Clicked (%) Avail. (%) rmeta

Satisfactory Rating 77.66 57.52 1.35 5 Star 3.29 1.15 2.86

Shower 69.19 46.04 1.50 Convention Hotel 7.99 3.05 2.62

Good Rating 68.60 51.98 1.32 Boutique Shopping 6.23 2.50 2.49

WiFi (Public Areas) 67.37 43.09 1.56 Romantic 20.76 8.38 2.48

Television 66.80 45.94 1.45 From 4 Stars 19.81 8.13 2.44

Car Park 66.65 52.62 1.27 Spa 11.56 4.77 2.43

WiFi (Rooms) 66.07 50.37 1.31 Porter 14.43 5.95 2.43

Hotel 60.18 40.91 1.47 Hammam 2.61 1.08 2.42

Non-Smoking Rooms 57.38 37.32 1.54 Body Treatments 5.95 2.49 2.39

Openable Windows 56.12 37.55 1.49 Room Service (24/7) 9.73 4.09 2.38
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4.2.3 Dataset partitioning setup

The impossibility of evaluating the performance of created models locally, due to the unavailability

of ground truth data for omitted click references alreadymentioned in Section 1.2, resulted in the need

to replicate the offline validation setup of a well-documented challenge solution to obtain comparable

results.8

The data was split according to the process applied by the 7th overall placed team Mustelideos

[113], which also framed the problem as multiclass classification with every click considered as a

training sample, and reproduced a setting similar to that found in the original challenge’s test dataset,

omitting the labels for each user’s last largest session clicks in the final two training days (05 and 06

November). For hyperparameter optimization purposes, a subset of the resulting training data was

split into smaller validation and test sets, corresponding to the last largest session clicks in the third

and fourth days (03 and 04 November), respectively.

The resulting sample distribution can be visualized in Figure 4.16, with further insights for each

of the sets provided in Table 4.4. Although examples from the sixth day are used to train the model,

which then evaluates fifth day samples, the sessions were assumed to be independent and no future

data from the same users in the test set was considered during training.

Figure 4.16: Dataset sample distribution per day for the training, validation and test sets.

Table 4.4: Training, validation and test set insights. The number of unique sessions is equal

to the sample number in validation and test sets.

Optimization sets Full sets

Data insight Train Validation Test Train Test

Sample (subsession) count 328 618 44 206 51 875 551 667 108859

Unique sessions 156 591 44 206 51 875 267 878 108859

Avg. sequence length 8.44 7.27 7.38 8.35 7.35

Avg. impression list length 23.15 22.72 22.86 23.15 22.87

8None of the other challenge entries’ feature or model architecture generation processes were referenced throughout the

development of the model, before the final evaluation stage.
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4.2.4 Feature representation

The processed dataset X̄, comprised of the enumerated continuous numerical and discrete

categorical features, had to be transformed in order to create suitable numeric input representations

for the deep learning model, X = {Xseq,Xses,X imp}, where Xfilt ⊂Xses and Xmeta ⊂X imp.

Embedding nominal categorical features

One of the simplest categorical transformation methods available consists in one-hot encoding

the categories such that each one is represented in a different dimension by a unit vector in Rdvoc ,

where dvoc is the vocabulary size (number of categories), and each pair of categories is at Euclidean

distance
√
2 from each other [38].9 Nonetheless, this sparse representation quickly becomes ineffi-

cient when dealing with larger vocabulary sizes and does not capture any similarity between cate-

gories [75]. For these reasons, one-hot encoding was only used for the d e v i c e and p l a t f o r m

features.

Alternatively, the categories can be mapped into dense continuous vector embeddings in a lower

dimensional Rdemb space (demb < dvoc), capable of encoding inter-category relationships10, such as

those obtained for users and items in MF. These embeddings can be either learned jointly with the re-

mainingmodel parameters from the data during training, or initialized and pre-trained separately, usu-

ally with methods based on Word2Vec [114] (contextual information) or GloVe [115] (co-occurrence

counts), initially developed for NLP applications. In the recommendation domain, specialized skip-

gram with negative-sampling (SGNS) [66] models such as Item2Vec [116] and Meta-Prod2Vec [117]

might be worth exploring to reduce the impact of input embedding learnable parameter dominance

in neural networks, consequence of the commonly large item vocabularies (FW.9).

An approach similar to that of [7] was taken, with features belonging to the same vocabulary/ID

space sharing the same embedding layers but being separately input to the network, such that

specialized representations are joint-learned per feature by deeper layers, with added efficiency and

generalization benefits. In this case, four ID spaces were considered: the item ID space, shared by

r e f e r e n c e i t e m I D and i m p r e s s i o n i t e m I D , the attribute ID space, shared by f i l t e r s

and i t e m a t t r i b u t e s , and the remaining individual action ID and city ID spaces, for a c t i o n I D

and c i t y respectively.

Table 4.5: Vocabulary sizes (unique IDs) for the considered embedding ID spaces.

Item ID Attribute ID Action ID City ID

Vocab. size 713 602 168 10 20268

9For example, the second category of a categorical feature with five-dimensional vocabulary may be represented by the

vector with a 1 at index 2, [ 0 1 0 0 0 ].
10Early word embedding applications noted that the learned representation space grouped similar words closer together

(with similar vectors), additionally disclosing other hidden syntactic and semantic correlations [66].
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These vocabularies, whose sizes are displayed in Table 4.5, were created after a full data pass11

and consisted of lookup tables mapping the original IDs into sequential integers, which are then

subsequently mapped to the corresponding vector embeddings by T e n s o r F l o w ’s embedding layer

implementation as part of the model. Out-of-vocabulary (OOV) values, such as non-accommodation

reference IDs, were mapped to the 1 integer token.

Although popular in the literature [7, 62] and suitable for serving conditions (in case popularity bias

or limited coverage are not of concern), retaining only an arbitrary top percentage of most popular

items by number of log interactions to reduce embedding parameters was not implemented due to

the resulting favorable prediction bias.

Normalizing continuous and ordinal features

Despite their theoretical robustness to uninformative and correlated features [77], with the ca-

pacity to automatically learn what details can be discarded when given enough training examples

[38, 111], neural networks can still be sensitive to input distributions and scaling. Data normalization is

a full pass processing technique that scales input features such that their magnitude ranges become

similar12 [75], known to promote SGD efficiency [86], and even being found critical for convergence

in [7].

The Min-max normalization method is typically used to linearly rescale each variable to the [0,1]

range. However, unbounded counter or time-based features are especially prone to legitimate ex-

treme observations, sometimes highly influential in the distributions, which might contain valuable

information that would be wrongly discarded if artificial value limits were to be imposed [118] (FW.10).

Therefore, Quant, the non-linear method applied in [7, 41], consisting of a uniform distribution map-

ping from an estimate of the feature’s cumulative distribution function, was implemented instead,

with s c i k i t - l e a r n 0 . 2 3 ’s Q u a n t i l e T r a n s f o r m e r [119], yielding better results (Section 5.2.2).13

Statistics were computed on the training set only, as to prevent information leakage from the test

data.

Padding and masking sequences

Since the neural network implementation requires fixed-length inputs14, sequences were post-

padded with zeros, in the case of embedding inputs, and negative ones, for the remaining features

where zeros were meaningful values in the data. Padded time steps were then masked so that they

were not considered by the network without it having to learn its irrelevance.

In the previous Section 4.2.2, it was mentioned that interaction sequences (in Xseq) were trun-

cated at 25 time steps. This value also corresponds to the maximum impression length available (in

11It was assumed that the ID spaces were immutable in the timespan considered.
12Preferably with averages close to zero.
13Increased performance was noted even when restricting min-max usage to ordinal features, as to prevent linear correlation

distortion, see M15 in Section 5.2.2.
14Mostly for efficiency, as T e n s o r F l o w requires predefined shapes for some operations. Tomake use of the faster GPURNN

variants (cuDNN-based), such as c u D N N G R U , the inputs must be strictly post-padded and recurrent dropout is not available.

In h t t p s : / / w w w . t e n s o r f l o w . o r g / a p i _ d o c s / p y t h o n / t f / k e r a s / l a y e r s / G R U , last accessed on 2020-03-24.
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X imp), and as embeddings are shared between i t e m s I D s in these two feature blocks, additional

unnecessary padding is avoided.

Because every individual metadata i t e m a t t r i b u t e and f i l t e r was mapped to its own

embedding vector, the attributes characterizing a single item in the impression lists and the active

filters in a single session corresponded to variable length embedding sequences. To concatenate

them with the remaining impression and session features, these embedding sequences were aver-

aged, as done in [7], creating non-sequential unified sample representations. To accomplish this,

each sequence was first padded with zeros and masked to obtain fixed sequences of length 112

(the maximum number of simultaneous item attributes and active filters). Metadata sequences, for

instance, were then input to a T i m e D i s t r i b u t e d Average Pooling layer (to average each of the

available impression items’ attributes) and then passed over by a L a m b d a layer to re-mask any N a N

(Not a Number) values resulting from averages over zero-only sequences.

4.3 Model architecture

The deep learning model’s structural core was designed following a multitask transfer learning

architecture [38], with specialized modules inspired by the literature, processing the different feature

inputs separately (with parameter sharing limited to the embeddings), whose output representations

are then combined and shared by deeper layers. The final version of the model was obtained from a

general possible hyperparameter space via the optimization process detailed below.

4.3.1 Hyperparameter optimization

The optimization process was designed to support a conceptualized highly conditional hyperpa-

rameter space centered on the available inputs, defining a wide variety of possible model complexity.

This space, fully described in Table 4.6, is subdivided into three main specialized branches tasked

with processing the impression (X imp), interaction sequence (Xseq) and session (Xses) inputs, whose

output representations are then combined, converging into an MLP (Section 3.1) connected to the

final dimensionality-correcting softmax layer that produces the classifier’s output (Section 3.3.1).

The sequential processing structures, for the impression and interaction sequence input branches,

were influenced by [48, 50, 58, 61, 62], consisting of an RNN block followed by an optional dense (fully

connected feedforward) layer. Four different GRU (Section 3.2) types were made available, corre-

sponding to simple single layer, stacked (S-GRU, two-layers with equal number of units), bidirectional

(Bi-GRU) and stacked bidirectional (Bi-S-GRU) versions.

The interaction sequence’s RNN block was adapted to include an optional self-attention (Section

3.4) layer, implementing the four mechanisms presented in Table 3.1. Additive, Dot and Scaled Dot

attentions were modified from [120], while the remaining Hierarchical attention was modified from

[121], to properly support padded time step masking. Additionally, as in [122], Additive, Dot and

Scaled Dot attention matrices were averaged over the time axis to produce single attention vectors

(and consequent context vectors).
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Table 4.6: Conditional hyperparameter space that controls the model’s architecture and

respective value ranges (adapted to suit memory and processing limitations, based on initial

test runs and typical literature values). Indented children hyperparameters require active

parents. Inputs are marked with (I), embedding dimensions with (E), and gated parameters

that can become False (increase negative selection probability in mostly continuous variables

and enable the optimizer to more easily discard full irrelevant blocks), with (B). Impression

and interaction sequence features were divided into codes (item ID sequences) and attributes

(remaining features). With this configuration, the impression list item embedding sequence is

the only guaranteed input. Active O1/M1 hyperparameters are boldfaced.

Impression attributes (I)

Item embedding (E)

Impression RNN type

Impression RNN units

Impression RNN dropout (B)

Impression Dense units (B)

Impression Dense dropout (B)

Metadata (I)

Metadata embedding (E)

Sequential codes (I)

Sequential attributes (I)

Action embedding (E)

Sequential RNN type

Sequential RNN units

Sequential RNN dropout (B)

Sequential Self-attention type (B)

Attention dimension

Sequential Dense units (B)

Sequential Dense dropout (B)

Session features (I)

Filters (I)

Session Dense dropout (B)

City embedding (E)

Session Dense units

Out 3 Dense units (B)

Out 3 Dense dropout (B)

Out 2 Dense units (B)

Out 2 Dense dropout (B)

Out 1 Dense units (B)

Out 1 Dense dropout (B)

Dense activation functions

Learning rate

H1

H2

H3

H4

H5

H6

H7

H8

H9

H10

H12

H13

H14

H15

H16

H17

H18

H19

H20

H21

H22

H23

H24

H25

H26

H27

H28

H29

H30

H31

H32

CodesHyperparameters
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Range

{T, F}

{2,...,50}

{GRU, S-GRU, Bi-GRU, Bi-S-GRU}

{10,...,250}

[0,...,0.7]

{10,...,250}

[0,...,0.7]

{T, F}

{2,...,30}

{T, F}

{T, F}

{1,...,15}

{10,...,250}

[0,...,0.7]

{None, Add., Dot, Hierarch., Scaled}

{32,...,320}

{10,...,250}

[0,...,0.7]

{T, F}

{T, F}

{2,...,30}

{10,...,250}

[0,...,0.7]

{25;125,...,500}

{150,...,1000}

[0,...,0.7]

[0,...,0.7]

{2x Out 2 Dense units}

[0,...,0.7]

[10-4,...,10-1]

{ReLU, PReLU, LeakyReLU}

{GRU, S-GRU, Bi-GRU, Bi-S-GRU}

The remaining session feature input is processed using a single dense layer. The joint MLP

block, tasked with processing the concatenated embedded representations output by the three main

branches, was based on [7]’s design and consists of three possible dense layers with decreasing

number of available units.
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Dropout (Section 3.3.5) was made available after every layer in the network. Two additional ReLU

variants, PReLU and LeakyReLU represented in Figure A.1c, were also made available as activation

functions for the dense layers.

Optimization setup The hyperparameter space was optimized using Bayesian Optimization with

Gaussian Process Upper Confidence Bound (BO GP-UCB, Section 3.3.4), using a modified K e r a s -

T u n e r 1 . 0 ’s B a y e s i a n O p t i m i z a t i o n O r a c l e [123] implementation and T e n s o r B o a r d ’s H P a r a m s

dashboard, to maximize the MRR objective function.

Default tuner σ2
noise and β values of 0.0001 and 2.6 were used (Equations 3.27 and 3.33). Matérn

kernel functions were used for the GP, with ν set to 5/2 (Equation 3.31), and inactive hyperpa-

rameters in optimization runs were reset to default minimum values, as in [90]. S c i k i t - l e a r n ’s

G a u s s i a n P r o c e s s R e g r e s s o r is used in the tuner’s back end to optimize the kernel’s length scale

such that it maximizes the log marginal likelihood, with the L-BFGS-B algorithm.15

To cover the most amount of space in the limited time frame, taking the expensive sample eval-

uation into account, the batch size was not tuned but instead fixed at 512 (Section 3.3.3) and early

stopping patience (number of allowed epochs with increasing validation loss versus the minimum

obtained in the run, Section 3.3.5) was set to 1. The Adam optimizer (Section 3.3.3) was used, with a

tuned initial learning rate given by H32 (remaining hyperparameters such as moment estimate decay

rates were left with default values).

The final process, which consisted of 1530 total runs and whose results are described in next

chapter’s Section 5.1, was divided into three modes:

1. Random: The bayesian optimization process can be initialized with an arbitrary number of data

points. This implementation generated 180 random samples as initial training data for the tuner,

corresponding to four times the dimensionality of the hyperparameter space (increased from

the default three due to high conditionality).

2. Bayesian: The tuner iteratively applied BO GP-UCB (Algorithm 1) for 1200 runs, from the

random foundation.

3. Top: Due to the non-deterministic nature of neural networks, the top scoring hyperparameter

set was not selected directly from the Bayesian section. Instead, the top 20 architectures

were picked for five additional runs with different parameter initializations. The selection was

then refined, with the top 10 being run an additional five times, for a more comprehensive

performance overview.

15If this algorithm does not converge within 20 restarts by default, the tuner draws a random sample from the hyperparameter

space. The UCB acquisition function was similarly optimized with L-BFGS-B, with a higher restart number of 50.
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4.3.2 Final model

The architecture with the best final average performance on the optimization test set (Section 5.1),

O1/M1 from Table C.1, is represented in Figure 4.17’s diagram.

Stacked Bi-GRU
Stacked Bi-GRUReLU Dense

Hier. Self-AttentionDropout

Dropout
ReLU Dense

Attribute
Embedding

City
Embedding

Item
Embedding

Action
Embedding

Average

Impression items Reference items

City

ActionsImpression
item attributes

Active filter
attributes

Concatenate

Softmax Dense

.  
.  

.

.  
.  

.

Impression list embeddingGeneral session embedding Action sequence embedding

Other session features Active filter/Impression item attributes embeddingCity embedding Other impression features

Action embeddingImpression/Reference item embedding Other sequence features

Figure 4.17: Final model diagram, corresponding to the O1/M1 architecture. Embedding, layer

and other component dimensions not to scale.

With every input active, the model assumes a parallel three-branched structure. Stacked Bi-

GRU modules process the sequential inputs, with the interaction sequences being further processed

with a Hierarchical self-attention mechanism: the impression sequences get embedded into vectors

in R2himp , the concatenated bidirectional final hidden states from the second GRU layer given by

Equations 3.5 (a-d), where himp is the number of impression GRU hidden units (H4); the interaction

sequences get similarly transformed but all the hidden states from every time step are passed in a

Rnseq×2hseq matrix, which is then embedded into R2hseq by the self-attention with Equations 3.34, 3.35

and 3.39, where hseq is the number of interaction sequences GRU hidden units (H14). H17 defines

ua and W a’s dimensionality in Equation 3.39.
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The session features input is processed with a ReLU dense layer with dropout. The transformed

feature representations are concatenated and processed by a ReLU dense layer with dropout and

then input to the final 25 unit softmax dense layer to produce the click probabilities for the impression

list items.

Table 4.7: Model O1/M1’s learnable parameter distribution.

Layer name Parameter count Distribution

Item Embedding 1 427206 28.29%

34.74%
Attribute Embedding 507 0.01%

Action Embedding 66 0.001%

City Embedding 324 304 6.43%

Seq. Bi-GRU 1 330924 6.56%

24.44%Seq. Bi-GRU 2 858048 17.01%

Hier. Self-Attention 43 800 0.87%

Imp. Bi-GRU 1 402000 7.97%
30.33%

Imp. Bi-GRU 2 1128000 22.36%

Session Dense 4 828 0.10% 0.10%

Out Dense 512 525 10.16%
10.40%

Softmax 11 900 0.24%

Total 5 044 108 100.00%

The model contains 5 044108 total learnable parameters, distributed as represented in Table 4.7.

The largest portion of these (slightly more than a third) is allocated to the embeddings, as expected

mostly due to the items’ large vocabulary, reflecting what had already been noted in [7].
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Chapter 5

Results and Discussion

The following sections are dedicated to the presentation and discussion of the results obtained

throughout the recommender’s development, addressing the proposed objectives and respective

research questions from Section 1.3: Both of RQ.3’s points are tackled in the optimization Sec-

tion 5.1, where both the general and hyperparameter-specific performance distributions display the

bayesian process’ impact (RQ.3.1), and where the random data point initialization is compared to

a fully bayesian one (RQ.3.2). Section 5.2 comprises the final model results (RQ.1). The attention

mechanism’s behavior is first analyzed in Section 5.2.1 (RQ.2.1), while its contribution to the model’s

performance (RQ.2.2) is explored in the ablation Section 5.2.2, along with that of the remaining model

components (RQ.1.1). Finally, Sections 5.2.3 and 5.2.4 concentrate on RQ.1.2, comparing the model

to simpler baselines and to the challenge’s leaderboard submissions.

Note The arithmetic mean is used as the default averaging method when not stated otherwise.

5.1 Optimization results

Following the process setup described in the previous Section 4.3.1, the MRR results obtained

in the optimization runs for the three different modes (Random, Bayesian, Top) are plotted in Figure

5.1, and an additional mode overview is presented in Table 5.1. The average time per run was of

431 seconds, with CPU-based1 runs taking approximately 16 times longer than those completed on

GPUs.

Table 5.1: Hyperparameter optimization result overview by mode.

Optimization mode Count Mean MRR (SD) Max. MRR Max. step

Random 180 0.47025 (0.07286) 0.61508 112

Bayesian 1200 0.62517 (0.01810) 0.63884 1373

Top 150 0.63641 (0.00186) 0.64091 1507

1CPU runs were required for some hyperparameter interval limit values, such as 50 dimensional item embeddings, due to

memory leakage issues with some of the randomly allocated GPUs.
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Figure 5.1: Hyperparameter optimization MRR results and maximum performance evolution

per run. Triangles mark the best runs in each optimization mode.

While the Random mode got within 4.03% of the maximum value obtained, the MRR in its last

120 runs only increased by 0.29%. The Bayesian mode promoted a contrasting rapid performance

increase of 3.29% in the following 85 runs, getting within 0.87% of the best result. Although the

increase was much less significant during the mode’s remaining runs, the fact that its best value

was obtained close to the end signaled a possibility for further improvement, if time limits were not

of concern. As additional advantages, this second mode combines significantly increased average

performance values with an approximately four times smaller standard deviation, reflected in Figure

5.1’s much lower MRR spread, where the observable lower peaks mostly correspond to the kernel

optimization convergence failure runs mentioned in the setup, which draw random hyperparameter

sets. The optimizer’s exploratory ability is also maintained, as seen in the following Section 5.1.1.2

To more directly assess the Random mode’s impact, the first 180 runs were repeated using BO

GP-UCB without space initialization. Each run’s results and both optimization modes’ cumulative

maximum values are plotted in Figure 5.2.

Figure 5.2: Random and Bayesian optimization initialization comparison.

2The following section’s distributions also show that limiting a few impactful hyperparameters’ values could significantly

improve the Random mode’s performance, a property that would require manual effort but that is exploited automatically in

the Bayesian mode.
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The Random mode’s higher exploratory potential is favorable, providing a good foundation for

future runs. With a constant UCB β of 2.6, the more exploitative bayesian optimizer’s performance

is intimately tied to its initial most randomized runs, which, in this case, resulted in a 9% lower best

MRR at the end of the 180 iterations. A possibly better performing fully bayesian alternative could

make use of an adaptive βn model, replacing the fully randomized section [92, 94] (FW.4).

5.1.1 Hyperparameter-specific results

Hyperparameter-specific ranking performance distributions of the optimization process, colored

by mode, are presented in Appendix C.2. The top architectures are detailed more extensively in the

following section.

The input’s influence over the ranking is displayed in Figure C.1, which shows the result plots

obtained for each boolean condition of the impression feature (H1), metadata feature (H8), interaction

sequence (H10), sequential feature (H11), session feature (H20), and filter feature (H21) hyperparam-

eters. Apart from the impression item-describing features, which yield some of the worst overall

results when disabled, the comparatively limited contribution of the remaining feature sets is noted,

but it is nevertheless clear that proper usage of the full input space is beneficial, as supported by the

top performing configurations. The sequential block’s inclusion follows in terms of significance, with

its feature, and remaining metadata, session and filter inputs presenting very similar impact. This can

also be observed in the averaged results of Figure 5.3 (generally and per mode), inspired by [61].
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Figure 5.3: Averaged input optimization ranking performance distributionwith 95%confidence

intervals obtained over 1000 bootstraps. Relative frequency distribution axes are omitted.

General averages disregard the optimization mode.

The overlaid relative frequency bars for each input condition mostly reflect the bayesian opti-

mizer’s behavior on the non-conditional hyperparameters (H1, H10, and H20). Since metadata,

sequential and filter features are dependent on their respective parent hyperparameter’s availability,

their inactive frequency is naturally higher.3

3It should be noted that the mean values presented are only able to provide a rough general comparative baseline as these

are heavily influenced by condition frequency, i.e., a very low amount of inactive examples might translate into lower average

condition values due to a greater impact of the generally worse random runs.
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Performance correlations are more challenging to detect in the almost uniform embedding di-

mensionality distributions, presented in Figure C.2, with peaks often corresponding to more focused

bayesian runs, as clearly evidenced by the higher value frequencies shown in the average plots of

Figure 5.4. The lack of relative support for the remaining values results in the larger confidence

intervals. With best value points scattered throughout the entire interval, the action embedding

dimensionality demonstrates a considerable degree of independence from the MRR. The remaining

plots show similarities in that the optimizer was able to obtain good results in the more explored

range extremes of every space, although it can be observed that the best performing data points

are found mainly at lower interval values, resulting in median dimensions of 3, 3, and 10 for the Top

mode’s item, attribute, and city embeddings, respectively.
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Figure 5.4: Effect of embedding latent dimensionality on ranking performance. 95% con-

fidence intervals obtained over 1000 bootstraps. Relative frequency distribution axes are

omitted.

With respect to the impression branch results of Figure C.3, it is clear that more complex recurrent

architectures with more units lead to better performance. The first dropout layer was found to have

a negligible effect and was skipped by the best model, with the remaining in the top ten only using

up to 0.15, obtaining similar results. The dense block’s inclusion only resulted in MRR decrease and

was therefore not included in any of the Top mode’s models.

The interaction sequence branch distributions are presented in Figure C.4. While better values

are again tied to increased recurrent architecture complexity, the difference between GRU types is

much less substantial than in the previous impression branch case. Comparatively, the unit count’s

impact is deeply reduced, with the top ten architectures not taking advantage of the full possible

amount and instead focusing on the 124 to 231 range, for an overall median value of 201 recurrent

units considering the best twenty models. Dropout was also found to have limited influence, having

been skipped by every top ten configuration. Regarding the self-attention mechanisms, all the tested

variants display a very similar but effective improvement over the base sequential block. In terms of

attention dimensionality, the top bayesian results are evenly distributed across the range. Isolating

the Top mode’s results by mechanism type, it can be observed that the best values are returned

for lower dimensions in the Hierarchical and Scaled versions, with medians of 100 and 77, when

compared to the Additive and Dot’s 279.5 and 248 median dimensions. Used by two of the Top
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mode’s models, with one employing the maximum number of units available, the following dense

block proved not to be useful and was skipped by the top ten. Its dropout layer was found to only

negatively impact the predictions.

The performance data points returned from the session branch (Figure C.5) show amore particular

concentration of best results in the mid-value dense unit range, between 100 and 200. A similar

behavior is verified in this block’s dropout distribution, with the top ten using from 0.19 to 0.34,

following a bayesian focus on the 0.3 value.

Regarding the joint MLP block’s results from Figure C.6, it can be seen that the first possible (and

widest, Out 1) layer’s use has strictly negative consequences. With a mostly uniform distribution

upwards of approximately 300 units, the best results obtained with the active second conditional

dense layer (Out 2) were close but still inferior to those displayed without it, by the top ten models.

Its specific dropout was not found to be helpful. By contrast, the third possible layer (Out 3) was

used by every Top mode configuration, with unit values scattered throughout the range between 160

and 475 (used by the best model), with a median of 294 units. Its dropout layer was the only other

consistently used by the best models, besides the session branch’s, and the only used to produce

every top twenty result, with values between 0.1 and 0.3.

Finally, Figure C.7 shows the distributions obtained for different Dense ReLU activation variants

and initial learning rates. While PReLU demonstrated a slightly lower value spread, all the types

obtained very similar results, with the best model using the base ReLU version. Adam’s initial

learning rate proved to be one of the overall most influential hyperparameters, with a best value

region concentrated in the 0.001 to 0.003 range and a sharp performance decline for values over

0.01.

Visible across most plots is an unusual horizontal concentration of results around the 0.42 MRR

region, corresponding to those of models that emphasize top position information (Section 5.2.3).

Most often, these data points result from either a lack of impression features input, a large impres-

sions block dropout value, a large initial learning rate or a combination of these. As alluded to in the

previous section, preventing these hyperparameter choices would have a major positive impact in

the process, at least substantially improving the Random results.

It is clear that such an intricate space would benefit from more exploratory coverage than that

provided by the 1380 runs, to help draw more conclusive performance relations from some of the

hyperparameters. Additionally, the large number of good results obtained by the optimizer near or

at the ranges’ limits point towards better possible results with less constrained value intervals on the

same underlying architecture, a hypothesis which could be tested in a less computationally limited

setup.

5.1.2 Best performing architectures

The top ten model architectures derived from the Top mode, O1 to O10, are detailed in Appendix

C’s Table C.1, and their corresponding optimization performance results are available in the Table

5.2 below.
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Table 5.2: Top ten model metric values averaged over ten runs with SD values in parenthesis.

Best and second-best results for each metric are boldfaced and underlined, respectively.

Model MRR Macro F1 Weighted F1 Accuracy NLL

O1 0.63829 (0.00133) 0.45773 (0.00237) 0.50563 (0.00155) 0.52141 (0.00169) 1.79424 (0.00990)

O2 0.63792 (0.00122) 0.45640 (0.00214) 0.45640 (0.00214) 0.52039 (0.00220) 1.79556 (0.00934)

O3 0.63745 (0.00083) 0.45559 (0.00221) 0.45559 (0.00221) 0.52032 (0.00142) 1.79976 (0.00790)

O4 0.63722 (0.00118) 0.45782 (0.00364) 0.45782 (0.00364) 0.52006 (0.00154) 1.80059 (0.00612)

O5 0.63719 (0.00137) 0.45482 (0.00357) 0.45482 (0.00357) 0.51956 (0.00231) 1.79549 (0.00652)

O6 0.63705 (0.00104) 0.45588 (0.00228) 0.45588 (0.00228) 0.51939 (0.00198) 1.79794 (0.00598)

O7 0.63704 (0.00147) 0.45668 (0.00293) 0.45668 (0.00293) 0.52017 (0.00246) 1.79903 (0.00957)

O8 0.63690 (0.00111) 0.45544 (0.00217) 0.45544 (0.00217) 0.51923 (0.00183) 1.79841 (0.01036)

O9 0.63682 (0.00153) 0.45561 (0.00228) 0.45561 (0.00228) 0.51979 (0.00264) 1.79952 (0.01275)

O10 0.63680 (0.00128) 0.45600 (0.00186) 0.45600 (0.00186) 0.51902 (0.00229) 1.79877 (0.00483)

O1, previously described in Section 4.3.2, obtained the best average MRR performance over

the ten final runs, with a 0.06% increase over O2’s, and was therefore chosen for the final test set

evaluation, explored in the following section. Classification-wise, however, the model was not the

best performing on the most infrequent classes but a close second instead, after O4, as indicated by

the macro F1. Its biggest advantage is associated to the highest list position class results, with the

weighted F1 value demonstrating a considerable ten percentage point increase over O4’s.

5.2 Final model results

The O1 architecture is denoted by M1 for all the final test set results. As was done at the end

of the optimization process, the M1 model was evaluated over ten runs with different initialization

parameters but now taking advantage of the full RSC19 dataset (refer to Figure 4.16). Lowering

the batch size down to 128 was found to slightly improve the overall performance, with any further

reduction only negatively impacting the training time. Early stopping patience was increased to five

epochs in discarded initial runs monitoring the validation error on the previous section’s optimization

test set, one of which has its validation and accuracy curves represented in the Appendix Figure

D.1. It was noted that the model would consistently obtain the lowest error value around the second

epoch, point at which the subsequent runs were stopped, producing the results presented in Table

5.3. The average performance values show increases of two (MRR) to three and a half percent (NLL

cost) when compared to the optimization results. Model training took an average of 618 seconds (309

seconds per epoch), while generating and evaluating the test set predictions, with a default batch

size of 32, took an average of 58 seconds (0.53 milliseconds per sample).

An arithmetic MRR class average value of 3.81 can be calculated for M1*, the best ranking weight

combination, from the individual predicted ranks, whose distribution is shown in Figure 5.5. This plot

simultaneously represents the predictions’ position deviation4 from the desired target of 1, showing

a satisfactory concentration of 75% of the clicked items within the first four impression positions.

4Subtracting one from the horizontal axis’ values. A perfect predictive model would assign a rank of 1 to every label (0 rank

deviation).
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Table 5.3: Final M1 model architecture test results. Average and standard deviation values

for 10 runs with different initialization parameters. M1* corresponds to the best ranking model

from the run set. Specific recall and precision values were not recorded during optimization

and are therefore not included in the delta comparison values.

M1 Model MRR M. F1 Wt. F1 M. Rec. M. Prec. Wt. Prec. Acc. NLL

M1* 0.65148 0.47277 0.52095 0.42011 0.55582 0.53698 0.53505 1.72953

Average 0.65113 0.47346 0.51923 0.41682 0.56471 0.53941 0.53465 1.73079

O1 Delta +2.01% +3.44% +2.69% - - - +2.54% -3.54%

SD 0.00052 0.00116 0.00009 0.00413 0.01448 0.00595 0.00109 0.00118
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Figure 5.5: M1*’s predicted target rank distribution.

As had been previously noted, greater ranking performance does not directly translate to strictly

better classification results. M1* demonstrates an increased correct classification count but displays

precision values below M1’s averaged runs. The individual class performance results obtained with

M1* can be observed in Table 5.4. While the MRR values approximately reflect the class support’s

distribution, the F1-score displays an abrupt drop from 0.67 into a relatively stable average of ap-

proximately 0.46 right after the first position, due to the combined effect of the recall and precision

distributions, naturally impacted by presentation bias. The recall displays a sharp decrease similar

to F1’s but bigger in magnitude, with values following the second class only achieving close to or

less than half of the 0.83 maximum. In contrast, the best precision values are tied to lower interface

positions, hinting that the models’ predictions are more contextualized in this region.5

Specific factors including circumstances in which non-item based interactions correspond to last

interaction sequence events, contribute to skew the predictions towards upper positions, with clicks

for the top position specifically increasing by 21.3% in these situations. Searching for new points of

interest or changing sorting methods, for instance, can signal changes in the intent and objective of

the session and introduce ‘soft resets’, meaning that the contextualization provided by the preceding

sequence is negatively impacted. The extreme bias introduced by shorter interaction sequences in

this dataset, previously discussed in Figure 4.10, directly impacts the ranking performance, as can

5The increased number of false positives for top classes with higher click probabilities can be easily observed in the

appendix confusion matrix of Figure D.3.
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Table 5.4: M1* architecture test results per class (clicked impression list position). Best and

second-best results per metric are boldfaced and underlined, respectively.

Class Support MRR F1 Recall Precision

1 30172 0.89689 0.66572 0.82988 0.55578

2 12040 0.71069 0.48643 0.52467 0.45338

3 8671 0.61191 0.47487 0.43536 0.52227

4 6842 0.60271 0.45705 0.43350 0.48330

5 5986 0.56370 0.46638 0.39977 0.55964

6 4860 0.51642 0.45120 0.38189 0.55123

7 4170 0.53509 0.44956 0.39592 0.52000

8 3663 0.49696 0.45190 0.37701 0.56390

9 3308 0.53378 0.44234 0.41626 0.47190

10 3040 0.50186 0.45803 0.38684 0.56134

11 2845 0.49474 0.44427 0.38735 0.52079

12 2450 0.49495 0.44926 0.40204 0.50904

13 2321 0.47409 0.46746 0.38690 0.59040

14 2147 0.48151 0.45647 0.39683 0.53720

15 1914 0.49226 0.49059 0.41536 0.59910

16 1849 0.46417 0.44473 0.37426 0.54790

17 1738 0.49790 0.47235 0.40794 0.56092

18 1522 0.48916 0.48589 0.40736 0.60194

19 1428 0.47946 0.48609 0.39776 0.62486

20 1390 0.49808 0.46378 0.41223 0.53006

21 1322 0.45305 0.46242 0.36536 0.62973

22 1236 0.47553 0.46967 0.38835 0.59406

23 1232 0.47116 0.47609 0.37581 0.64937

24 1247 0.47141 0.47348 0.38653 0.61090

25 1466 0.51047 0.47332 0.41746 0.54643

be observed in Figure 5.6. Although longer sequences are able to provide more predictive context,

the expanded impression position possibilities and reduced number of training samples negatively

affect the results.

The model’s behavior can be more precisely observed in the nine specific session results pre-

sented in Appendix Section D.3, which include the predicted click probabilities for each of the impres-

sion items and the attention weights for the sequential interactions. Of the three incorrect prediction

examples shown (D.3.4, D.3.6, D.3.9), only D.3.9 contained a target item that had been previously

interacted with by the user. In both cases (D.3.6, D.3.9) where the model missed the first impression

position target, the previous interactions were located further down in the list, with items in the

12th and 4th positions respectively. In these situations, interaction probabilities with higher items

is naturally reduced. It should be noted, however, that the first positions still corresponded to the

third and second-ranked item predictions. The remaining session input D.3.4 shows the influence

of a ‘soft reset’ event in the model. After the final destination search event, none of the interacted

items is available in the final impression list and the prediction probabilities assume an initialized

distribution similar that of the class supports.
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Figure 5.6: Model M1*’s ranking performance by interaction sequence length and relative

sample distribution with omitted axes. The visible increased number of 25 time step samples

is a product of the sequence thresholding procedure.

5.2.1 Attention performance

M1*’s Hierarchical attention weights were averaged6 for the different possible maximum interac-

tion sequence sizes and plotted in Figure 5.7’s heatmap.
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Figure 5.7: Average attention weights per time step for given maximum interaction sequence

lengths.

The obtained attention values reflect a behavior similar to that of [64]’s SASREC on their sparsest

Amazon Beauty dataset, but much more biased towards the last sequence events, which can be

observed in most of the examples in Appendix Section D.3.7 Further data exploration helped justify

this distribution, by revealing that 37.9% of the clicked items correspond to the references of last

item-based interactions. Similarly high importance weights attributed to more general last events, as

in D.3.4, can possibly result from their ‘soft reset’ potential discussed in the previous section.

The weights appear less skewed towards final interactions and the sequential branch contributes

with a more general sequence representation whenever a given item is re-interacted with after inter-

6The average attention for each time step is based on valid, non-padding values only.
7The remaining attention types produced similar distributions.
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action gaps with other items (skip behaviors [45]), as seen in D.3.6 and D.3.9. In certain situations,

like D.3.8, the mechanism is also able to single out specific item interactions.

Table 5.5: Average attention weights by action type. Biggest and second-biggest values for

each column are boldfaced and underlined, respectively.

Action type Avg. attention weight Last interact. (%) ratt

Interaction item deals 0.2369 0.0648 3.66

Interaction item info 0.2001 0.0908 2.20

Search for item 0.1955 0.0387 5.05

Interaction item image 0.1794 0.3590 0.50

Clickout 0.1751 0.1617 1.08

Interaction item rating 0.1516 0.0602 2.52

Search for POI 0.0980 0.0225 4.36

Filter selection 0.0975 0.1434 0.68

Search for destination 0.0738 0.0449 1.64

Change of sort order 0.0198 0.0140 1.41

Overall, item-based actions were given bigger average attention weights than their more general

counterparts, as can be observed in Table 5.5. The quotient between the average attention weight

and the normalized last event incidence, ratt, was taken for each action, to introduce the last item bias

effect. Sorting by ratt, although clicks and image interactions get pushed to the list’s bottom three,

the remaining four item-based actions are still concentrated in the top five. This focus on specific

action types is reflected in the examples D.3.5 and D.3.7, for instance, where the item search (9) was

emphasized over the final item image (5) and rating (7) interactions.

5.2.2 Model ablation

An ablation study inspired by [6, 58, 62, 64] was performed to assess the impact of individual

model components and processing methods. Fourteen model variants based on M1 were tested

under the full model setup conditions described at the beginning of Section 5.2, divided into three

categories:

• Model component removal Single component removal, identified by the respective hyper-

parameter codes8. (M2) No impression features, H1; (M3) No interaction sequences, H10; (M4)

No interaction sequence features, H11; (M5) No attention, H16; (M6) No session features, H20;

(M7) No filter features, H21; (M8) No metadata features, H8; (M9) No joint dense layer, H25.

• Model baselines With the inability to directly compare full corpus session-based ranking

recommenders to M1 (discussed in Section 2.3.3), two modified architectures which influ-

enced its item embedding processing foundation, conditioned on the impression list items,

were added as baseline references. (M10) Only interaction sequence and impression item

embedding inputs, processed by the respective sequential blocks and joint MLP, inspired by

GRU4Rec+ [58]; (M11) M10 with attention, inspired by NARM’s local encoder [62].

8Relevant hyperparameter H# codes are retrieved from Table 4.6
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• Processing Changes in data processing methods. (M12) No data augmentation, only last

session clicks used for training; (M13) Class balancing method assigning more influence to

minority classes in the cost function, with the class weights parameter as in [124]; (M14) Min-

max normalization instead of Quant; (M15) Min-max normalization for ordinal features, Quant

for the remaining.

Each configuration’s results, corresponding to performance averages over five runs with different

initialization parameters, are shown in Table 5.6.

Table 5.6: Model ablation results with average values over 5 runs with different initialization

parameters (except for M1’s which correspond to Table 5.3’s 10 run averages) and a batch

size of 128. Delta corresponds to the MRR decrease from M1’s. Best and second-best values

are boldfaced and underlined, respectively.

Model MRR Delta (%) M. F1 Wt. F1 M. Rec. M. Prec. Wt. Prec. Acc. NLL

M1 0.65113 - 0.47346 0.51923 0.41682 0.56471 0.53941 0.53465 1.73079

M2 0.47368 -27.25 0.08335 0.25107 0.08875 0.12400 0.23646 0.33909 2.42430

M3 0.64039 -1.65 0.46184 0.50972 0.41436 0.53666 0.52150 0.52199 1.77917

M4 0.64251 -1.32 0.46257 0.50870 0.40935 0.54868 0.52322 0.52223 1.77788

M5 0.64659 -0.70 0.46785 0.51421 0.40945 0.56613 0.53992 0.53046 1.74843

M6 0.64587 -0.81 0.46951 0.51518 0.41549 0.55599 0.53252 0.52811 1.77264

M7 0.64719 -0.61 0.46865 0.51565 0.41242 0.56258 0.53437 0.53025 1.74149

M8 0.64537 -0.89 0.46740 0.51239 0.41431 0.55236 0.53362 0.52878 1.75648

M9 0.64615 -0.77 0.46337 0.51081 0.40950 0.55229 0.53065 0.52554 1.75511

M10 0.45088 -30.75 0.06637 0.22062 0.07429 0.10170 0.20325 0.31191 2.50279

M11 0.45633 -29.92 0.06659 0.22060 0.07409 0.11903 0.21354 0.31525 2.48960

M12 0.63548 -2.40 0.45388 0.50331 0.40206 0.54027 0.52239 0.51871 1.79999

M13 0.59687 -8.33 0.43000 0.48901 0.43655 0.43245 0.51323 0.48034 2.01977

M14 0.63976 -1.75 0.44603 0.50290 0.38818 0.54916 0.52676 0.52114 1.78524

M15 0.64673 -0.68 0.47272 0.51866 0.41932 0.55976 0.53432 0.53186 1.76813

It can be noted that the overall most impactful model component corresponds, by a wide margin,

to the impression features input, reflecting the optimization distribution analysis of Section 5.1.1. With

macro and weighted F1 values 82.4% and 51.64% lower than M1, respectively, M2 is significantly

worse classification-wise. Its also considerable ranking performance decrease of 27.25% is followed

by M3’s lack of sequential interaction input, with a much less significant (16.5 times smaller) drop.

On the other hand, M7 and M5’s lack of filter features and attention mechanism, respectively,

result in the smallest MRR decreases. The 0.70% ranking performance gain attributed to the Hierar-

chical attention implementation is complemented by improved minority class identification, however

at a cost of slightly lower precision, with the increased prediction count in this class region conse-

quently resulting in a larger amount of false positives.

The simplest baseline M10 and M11 models seem to over-rely on sequence-induced position

information, obtaining only marginally better results than a model limited to top position predictions

(POS, in the next Section 5.2.3). With a 30.75% ranking decrease, 7.1 and 2.35 times smaller macro

and weighted F1s, compared to M1’s average values, M10 was the worst performing configuration.
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The Hierarchical attentionmechanism’s inclusion inM11 improved its ranking performance by 1.21%.

Regarding processing methods, the increased training information provided by the data augmen-

tation procedure was found to have a key positive effect in the overall performance of the model,

corresponding to the second most important M1 ranking component. Although comparatively less

influential in the ranking, proper data normalization was likewise found to have an important role

in the results, showing clear benefits of the non-linear quantile transformation. Min-max usage

in the whole dataset was linked to the third biggest MRR decrease when considering single M1

component edits. Its usage is disadvantageous even when the transformation is reduced to ordinal

features. The attempt to balance the problem using the class weights parameter, which emphasizes

minority predictions in the loss function, saw an increase in the ability of the classifier to find minority

samples, as indicated by the 4.73% macro recall increase over M1’s, but also a simultaneously

significant decrease in every other metric, including the fourth biggest ranking-wise. Alternatives,

such as different sampling methods, were not explored as most, especially binary extensions that

balance according to the biggest or smallest class, might not be suitable for multiclass settings [125].

Imbalance impact on evaluation metrics can also be considered in follow-up work [126] (FW.11).

5.2.3 Baseline comparison

The development of suitable baselines to further contextualize M1’s performance faced numerous

challenges, expanding on those mentioned in Section 2.3.3.

User and utility-based solutions, including matrix factorization methods, are not suitable for se-

quential session-based environments andwere not considered [70]. Neighborhood-based approaches

are limited by their often largememory requirements, aggravated by RSC19’s large item space dimen-

sionality. Session-based kNN (s-kNN) and its variants have obtained decent results in some session-

based problems [69, 70] but their output scores based on item interaction occurrence and ses-

sion similarity are oriented for next-item single-interactions predictions, predominant in e-commerce

datasets. Since most impression items are not interacted with in RSC19’s sequential events, s-kNN

would not be able to produce recommendation scores for these without any type of modification.

Additionally, only an adapted version such as [70]’s that accounts for a mere 500 neighbors within

the 1000 most recent sessions would be feasible as producing pairwise similarity scores between

the full session corpus would require an almost 66 billion entry matrix (FW.12).9

Therefore only simple, static baselines without learnable parameters were considered, based on

those used in [55, 58, 62, 67] and the one provided by the challenge’s organizers, (CL-L), which

always recommends the most globally clicked items. The problem with CL-L is that it does not

account for causality, using future click information to make predictions. This was fixed in (CL),

which only uses each item’s previously recorded clicks until the relevant click events’ timestamps.

(S-CL) applies the same concept to local session-based click information, using CL values to break

ties. (POP) extends CL to make use of the remaining views, interactions and dwell time counts

9Ntest ·Ntrain+ 1
2
Ntest ·(Ntest−1) = 65979 004 464 - similarity scores between test sessions and previous train sessions

plus the lower triangular pairwise similarity matrix entries between test sessions.
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for a measure of global item ‘popularity’, with (S-POP) doing the same for S-CL. Given the much

discussed bias towards top positions, (POS), which recommends only the top position’s items, was

added. Following the results of Section 5.2.1, the (LAST) model was created to recommend the

last interaction sequence reference item, using S-POP values for non item-based actions. Finally,

(PRICE) always recommends the cheapest impression item and a random predictor, (RAND), was

added for reference.

Performance results for each baseline model are presented in Table 5.7, sorted by MRR.

Table 5.7: Baseline results and comparison to the best model M1*.

Baseline MRR M. F1 Wt. F1 M. Rec. M. Prec. Wt. Prec. Acc.

M1* 0.65148 0.47277 0.52095 0.42011 0.55582 0.53698 0.53505

Delta +13.72% +11.88% +6.82% -3.21% +34.71% +8.71% +10.64%

LAST 0.57288 0.42255 0.48770 0.43406 0.41260 0.49395 0.48358

S-POP 0.48889 0.24980 0.34504 0.24834 0.25176 0.34591 0.34446

POS 0.42420 0.01736 0.12030 0.04000 0.01109 0.07682 0.27717

CL-L 0.27397 0.09071 0.15718 0.09457 0.08867 0.17229 0.14914

S-CL 0.25488 0.09039 0.15016 0.09275 0.08914 0.16151 0.14376

POP 0.25439 0.07015 0.12223 0.07613 0.06900 0.15108 0.11035

CL 0.23116 0.07278 0.13066 0.07587 0.07138 0.14541 0.12283

PRICE 0.18965 0.05521 0.08882 0.07147 0.06135 0.13193 0.07691

RAND 0.15359 0.03246 0.04902 0.04040 0.04094 0.11612 0.04071

Obtaining only slightly better results than the random predictor, PRICE was the second-worst

performing model. Although the provided baseline, CL-L, secured the fourth-best ranking result,

it was underwhelming when compared to the 1.55 times bigger value required to enter the top

three. Unsurprisingly, the modified CL version performed worse, with relative drops of 15.6%, 19.8%

and 16.9% for the MRR, macro F1 and weighted F1 respectively. S-CL’s results were, however,

only marginally worse than CL-L’s, demonstrating the impact of local, session-based information in

RSC19. POP’s extension of CL resulted in a 10% MRR increase but a slight overall decrease in the

remaining classification metrics, aside from weighted precision. Nevertheless, as with click infor-

mation, the session-based S-POP version performed better. In fact, the local interaction popularity

indicators proved to be important enough for the increase to be muchmore significant in both ranking

(1.92 times bigger MRR) and classification (3.56 and 2.82 times multipliers for macro and weighted

F1s), leading to the second-best baseline result. The benefits of having multiple evaluation metrics

are apparent in POS’ case, where the MRR (only 0.065 lower than S-POP, 1.55 times CL-L’s) and also

elevated accuracy might lead to misleading positive conclusions driven by the biased nature of the

label distribution.10 With the exception of weighted F1, which is still decently influenced by the correct

first-class predictions, the remaining classification values expectedly demonstrate the opposite, with

results inferior to those of RAND. In the end, the best baseline result was achieved by LAST, with

considerably better values than S-POP in every metric and even obtaining a narrowly better macro

10Still, when the focus is placed solely on MRR performance, POS already beats the provided baseline by a decent margin.
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recall than M1*. Nonetheless, the remaining M1* delta values show that the deep learning model still

significantly outperforms the baseline, whose MRR is lower than even the average returned by the

Bayesian mode on the smaller optimization dataset, from Table 5.1. Regardless, given how simple

the logic behind each of the baselines is, the obtained results are impressive and signal the possibility

for potential competitive performances with further focus on more complex configurations.

5.2.4 RecSys19 performance

Applying [113]’s data split resulted in the ability to use their noted average difference between

local and deployed submission results in the challenge’s online test set of +1.7% to generate a final

MRR estimate for M1* of 0.66255. This value is represented in the leaderboard’s result distribution

by position of Figure 5.8.
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Figure 5.8: Leaderboard MRR distribution for the 575 submissions. The predicted M1* score

on the online test set is signaled with a triangle.

The MRR distribution for the 575 submissions displays two significant value step concentrations

starting at approximately positions 550 and 310. The former, and also more predominant one,

corresponds to CL-L baseline results, which are in fact 4.83% higher than the local test set values

obtained in the previous Section 5.2.3, while the latter more closely approximates the predicted S-

POP result, with a 2.35% difference. M1*’s estimated performance would obtain the 39th position

(one higher than M1’s average), corresponding to the 93.5% and 85.7% quantiles when considering

the full submission space and only values above CL-L’s, respectively.

Although the gap to the top ten was still of a significant, but expected, 2.11%, as displayed in

Table 5.8, the obtained results are quite decent, especially when taking into account the unfeasible

computational requirements, model complexity, and feature generation focus of the best-performing

entries, dominated by decision tree ensembles, versus M1*’s representation learning emphasis.11

11For reference, LogicAI’s first place model [127] consisted of a 37 Multiple Additive Regression Tree (MART) ensemble with

250 different features, plus augmentations, trained on virtual machines with 96 vCPUs and 624GB RAM; Layer6’s second

place result [128] was obtained by a linear blend of LSTM, Transformer, and Gradient Boosting Machine (GBM) models, with

330 features, running on a 256GB RAM machine with a Titan V GPU; the remaining entries in the top five [129–131] used a

stacking GBM ensemble, an [42]-inspired neural network and GBM ensemble, and a GBM, Doc2Vec, MF and BPR hybrid,

respectively, with the latter making use of 518 different features.
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Table 5.8: M1* compared to top leaderboard scores.

Position MRR Delta (%)

1 0.68571 +3.50

7 0.67884 +2.46

10 0.67655 +2.11

20 0.66860 +0.91

30 0.66497 +0.36

Predicted M1* score

39 0.66255 -

Some of the feature-based strategies used by the preceding models, such as the generation of

additional ranking, augmentation, aggregation and boolean inputs, which frequently rank the highest

in decision tree model importance, could be used to most likely easily close the small 0.36% and

0.91% intervals to the top 30 and 20 positions without the need for architectural changes. Other

transformations such as the input of squared, square root and log versions of continuous features,

are reported to increase the network’s expressive power in [7], could also be tested for the same

effect (FW.10).

With respect to possible relevant structural changes for ranking performance improvement, be-

sides ensemble implementations, the adoption of the transformer architecture, which returned the

best neural network-based results in [128], would be a priority. The implementation of different

attention types besides self-attention, such as those used in [113]’s 7th place solution, could also

be used to enhance the model and enable it to use the sequential interactions (Keys, Values) to

attend over the impression items (Query) directly, for instance (FW.2). Factorization-based interaction

layers like those in [42, 130] and residual connections, used in [54, 64], also seem to offer significant

advantages in e-commerce datasets (FW.14).

The exploration of additional regularization strategies is also necessary. The training curves

returned by the M1 test runs from Section 5.2, like those from Appendix Figure D.1, show a quick

overfitting behavior, which [113] also noted in their L2-regularized model. Higher dropout rates and

lower initial learning rates lead to curves similar to those in Figure D.2, which seem better-behaved

but lead to worse results (FW.5).

All of the enumerated changes would, however, still have difficulty placing the newmodel near the

top ten, as the higher 2.11% MRR delta is also linked to the usage of non-causal information by the

best performing models, namely the time difference between clicks and previous sequential events

which is consistently reported as a top contributing feature [113, 127, 128, 130, 131], not used by

M1.
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Chapter 6

Conclusions

This final chapter presents a review of this work’s achievements, alongside notable future research

directions.

6.1 Achievements

This work encompassed the development of a deep learning re-ranking recommender system

with self-attention for session-based environments, subject to an automated modular architectural

bayesian optimization process, successfully accomplishing the objectives proposed in Section 1.3.

Chapter 5’s results translate into the following briefly summarized answers to the research ques-

tions associated with each objective:

RQ.1 The developed model was able to obtain a concentration of 75% of the clicked items within

the first four predicted rank positions in the local test set, performing considerably better

(+29.9% MRR) than an adapted state-of-the-art attentional architecture based solely on se-

quential interaction information. The click-based predictive objective is heavily influenced

by the imbalanced data distribution reflecting the effects of presentation and other implicit

biases, promoting better ranking and classification performances in top classes: The MRR

values approximate the decreasing class support distribution; The F1 values experience a

more drastic negative drop right after the first class, with the model’s ability to detect lower

positioned class instances decreasing but with the proportion of correct positive predictions

slightly increasing instead. The higher number of false positives associated with higher class

predictions were also found to be correlated with additional sequential circumstances, such

as last events with non-item interactions and events with major interface control, including

sort changes and new destination searches.

The incremental addition of properly transformed feature inputs is linked to the most promi-

nent positive performance impact, particularly those which directly describe the presented

impression items and their interaction profiles. This property emphasized the benefits of

increased personalization and the power of representation learning, which would still prove

limited against the ability of models exploiting hundreds of features and subsequent augmen-
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tations. Besides other structural components like the self-attention module, the training data

augmentation process also contributed to the 13.7% ranking gap over the best performing

simple baseline that leveraged data bias, combining last interaction information with session-

based markers.

The estimated final MRR of 0.66255 for the RecSys19 test set, which translates into a 0.91%

ranking difference to the leaderboard’s top 20, can also be considered relatively good when

taking into account the structural and computational complexity of better-ranked models, not

to mention the unfeasible results supported by non-causal information, reported by some.

RQ.2 Although the 0.7% ranking performance increase attributed to the self-attention mechanism

was not as significant as that of other model components, it promoted an increase in less

supported class region predictions, leading to better recall values at the expense of slightly

lower precision. Furthermore, the learned attention weight distributions provided insight

into the model’s sequential branch prediction contribution, improving recommendation in-

terpretability. Two of the most interesting data characteristics captured by the mechanism

include the relative higher importance of last sequential events1 and the greater impact of

specific item-based actions, including item searches and deal interactions. In addition, some

sample examples showed skip-behavior awareness and the mechanism’s ability to isolate

interactions with specific items.

RQ.3 The bayesian optimization mode provided a rapid MRR increase of 3.29% in its first 85

runs over a previous relatively stable maximum value, while also obtaining a superior overall

average ranking performance (+1.33x) with four times smaller standard deviation compared to

the random datapoint initialization. Additionally, the optimizer was able to automatically avoid

some of the worst-performing hyperparameter configurations while maintaining a decently

exploratory behavior with some focused runs on potential high-value targets, displayed in the

hyperparameter-specific distributions. With such a complex configuration space, the random

mode was nevertheless found to provide significant benefits as the optimization’s foundation,

outperforming a more exploitative fully-bayesian approach, highly dependent on initial run

results.

While the predictive representations learned by the model are undeniably powerful, the re-ranking

objective’s applicability in this domain is limited by the lack of dynamic impression list presenta-

tion [131]. Unlike in YouTube or Amazon, where recommendations in dedicated video or product

pages can change with every interaction, additional insight in trivago’s recommendations can only

be reflected after drastic interface events such as sort changes. Furthermore, although RSC19 most

closely resembled a real-world scenario with the availability of metadata and other contextual features

mostly disregarded in other e-commerce datasets (which often focus solely on item ID sequences),

1This behavior is verified in other sparse datasets [64] and includes non-item-specific interactions, which generally prompt

probability distributions loosely proportional to the class supports.
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the lack of crucial information such as item-specific location data or interface details2 hindered the

modeling potential and prevented full ranking applications, which would have had been arguably

more useful.

6.2 Future work

Future work topics mentioned throughout the document are presented in order of appearance.

Starred entries are mostly framed for different datasets or environments with data unavailable in

RSC19.

FW.1 Multi-objective modeling Explore multi-objective modeling to estimate different types

of user behavior, enabling the creation of various parallel predictive intent representations.

One possible approach is the use of Mixture-of-Experts model achitectures, such as those

used in [34, 50] to process different temporal ranges and predict numerous engagement and

satisfaction tasks on YouTube.

FW.2 Attention and transformer architectures It would be interesting to evaluate the impact of

additional mechanism types such asmulti-head attention and non-self-attention approaches,

that could expand on the observed scaled dot behavior with a focus on different sequence

properties and provide more inter-branch interaction by attending to sequences with respect

to other contextual information. A further step would consist of a transformer architecture

implementation, prevalent in themost recent state-of-the-art approaches in recommendation

(and a variety of other fields, such as NLP), reported to have contributed with the best DL-

based results in RecSys19 [128].

FW.3 Other losses While its combination with the softmax function introduces list-based proper-

ties, the negative log loss is still essentially a pointwise loss in the learning-to-rank framework.

Different pairwise and listwise lossesmight achieve better results at the expense of efficiency.

Alternatively, a regression-based solution to the problem can also be explored for more

control over specific interaction weights or penalties contributing to a given item score, for

instance.

FW.4 Bayesian optimization The usage of a bayesian optimizer proved advantageous given

the complexity of the conditional hyperparameter space. However, the impact of several

of its components was left unexplored. In the future, more focus would be given to the

GP kernel’s hyperparameter tuning process and to the study of other kernel types, including

those of conditional nature. Additionally, other acquisition functions, and the implementation

of an adaptive UCB β would also be explored.

FW.5 Regularization Consider additional regularization methods to tackle overfitting, including

L2, L1, batch and layer normalizations.

2Interface information was only available at click time and is challenging to estimate for other time steps. In some situations,

interacted items were not present in impression lists even without any interface change signal, which constrained navigation

evolution analysis, for example.
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FW.6 User profiles* Expand model to leverage user specific features and long-term signals in

different sequential environment. Make use of user-specific exploration-exploitation com-

ponents (ranking demotion, engagement strategies, and further personalization) [7].

FW.7 Temporal trends* Consider greater timespan data to introduce item evolution and time-

windowed popularity indicators [44, 50].

FW.8 Interface features* Descriptive platform interface features have an unsurprisingly consid-

erable influence in predictive tasks but were quite limited in the RecSys19 dataset. Thumb-

nails, for instance, play a major role in YouTube users’ item selection process. Different

types of visual information, for example, can be easily processed by including a parallel

convolutional branch in an adaptedM1-type architecture. Most user decisions are alsomade

in a relative environment against other selection possibilities so relative comparison features

such as those used in [127] for items in the vicinity of one currently being interacted with

should also be considered in the future.

FW.9 Embeddings Focus on embedding pre-training or initialization strategies (with possible

incorporation of the metadata information for item embeddings, location information for city

embeddings), and visualization exploration.

FW.10 Data transformation and outliers Extend feature generation process to include further

personalization with relative rank, boolean transformations (especially important as contin-

uously growing counters become unsustainable in larger timespans) and additional trans-

formed continuous inputs for expressiveness (squares, square roots). Input decorrelation

and other normalization methods should also be investigated, along with outlier impact and

processing.

FW.11 Data imbalance and bias* Check additional data balancing methods for both interaction

sequence sizes and clicked positions (classes), including sampling methods, and further

explore imbalanced metric impact. In addition, expand study on bias influence and removal

methods (with adversarial training as in [34] instead of only inputting position as a feature,

for selection/presentation bias).

FW.12 Baselines Implement additional baseline algorithms, such as modified s-kNN variants, and

other more complex non-DL architectures, including session-based factorization, MDP, and

the Recsys19 dominant decision tree boosting methods (XGBoost, LightGBM).

FW.13 Ranking and A/B* Extend the task to full ranking and incorporate A/B setting experiments,

introducing online dynamics.

FW.14 Model architecture Adapt the model to support residual connections, factorization layers,

and alleviate some hyperparameter range limits in a less constrained computational environ-

ment.
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FW.15 Time efficiency Focus more deeply on processing and serving time efficiency, targeting

online settings.

FW.16 Additional topics* Delve into cold-start warm up and more recent recommendation topics

including diversity impact, gamification introduction, cross-domain analysis, conversational

systems, and explainability.
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Appendix A

Mathematical Background

A.1 Activation functions
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(a) Heaviside step function with H(0) = 0. (b) Logistic sigmoid function, σ(x) = 1/(1 +
exp (−x)).
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ReLU and PReLU

g(x) = PReLU(x, α= 0.1)

g(x) = ReLU(x)

(c) The parametric ReLU is given by

PReLU(x)=max(0,x)+αmin(0,x), where the

α is learned during training. Hard-setting α to 0

or 0.01 returns the original ReLU and Leaky ReLU

versions, respectively.

(d) Hyperbolic tangent function, tanh(x).

Figure A.1: Referenced non-linear neural network activation functions plotted in the interval

x ∈ [−5, 5].
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A.2 Probability and Information theory

Definitions based on Goodfellow et al. [38]. Probability mass functions are denoted with P (·),

and probability density functions with p(·). In A.7, Q represents a separate probability distribution.

f and g are arbitrary functions. Subequations in A.1 and A.4 denote continuous and discrete cases,

respectively.

Marginal probability distribution

p(x) =

∫
p(x, y) dy (A.1a)

P (x) =
∑
y

P (x, y) (A.1b)

Conditional probability

p(x|y) = p(x, y)

p(y)
(A.2)

Bayes’ rule

p(x|y) = p(y|x)p(x)
p(y)

(A.3)

Expected value

Ex∼p[f(x)] =

∫
p(x)f(x) dx (A.4a)

Ex∼P [f(x)] =
∑
x

P (x)f(x) (A.4b)

Covariance

Cov(f(x), g(y)) = E[(f(x)− E[f(x)])(g(y)− E[g(y)])] (A.5)

Variance

Var(f(x)) = Cov(f(x), f(x)) = E[(f(x)− E[f(x)])2] (A.6)

Cross-entropy

H(P,Q) = −Ex∼P [logQ(x)] (A.7)

A.2.1 Gaussian Identities

Based on Rasmussen and Williams [91].

The multivariate Gaussian (or Normal) distribution x ∼ N (m,Σ), in D dimensions, has a joint

probability density given by

p(x|m,Σ) = (2π)−D/2|Σ|−1/2 exp (−1

2
(x−m)>Σ−1(x−m)), (A.8)

where m is the mean vector and Σ is the symmetric, positive and definite covariance matrix.
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Let x and y be jointly Gaussian random vectors,

x

y

 ∼ N
µx

µy

 ,

A C

C> B

 = N


µx

µy

 ,

Ã C̃

C̃> B̃

−1
 . (A.9)

The marginal distribution of x and the conditional distribution of x given y are

x ∼ N (µx, A), (A.10)

x|y ∼ N (µx + CB−1(y− µy), A− CB−1C>) (A.11a)

∼ N (µx − Ã−1C̃(y− µy), Ã
−1). (A.11b)

The product of two Gaussians gives another un-normalized Gaussian

N (x|a, A)N (x|b, B) = Z−1N (x|c, C), (A.12)

where c = C(A−1a + B−1b) and C = (A−1 + B−1)−1. The resulting Gaussian has a precision

(inverse variance) equal to the sum of the precisions and a mean equal to the convex sum of the

means, weighted by the precisions. The normalizing constant also looks like a Gaussian (in a or b)

Z−1 = (2π)−D/2|A+B|−1/2 exp (−1

2
(a− b)>(A+B)−1(a− b)). (A.13)

87



Appendix B

Feature generation

B.1 Feature space

Table B.1: Feature space. *Original features, +Vectorized inter and in-session time accumu-

lators, �Accompanied by boolean features for value existence.

Sequential (Xseq) Session (Xses) Impressions (X imp)

• Ref. item ID* • Subsession • Imp. item ID*

• Action ID* • Total substeps • Position

• Step* • Total time steps • Price*

• Frequency • Total session time • Views+

• Session time� • Imp. list length • Clicks+

• Time dif.� • City ID* • Interactions+

• Dwell time� • Platform* • Dwell time+

• Device* • Metadata (Xmeta)*

• Filters (Xfilt)*

B.2 Data visualization

95% confidence intervals were obtained over 1000 bootstraps in the following plots, and relative

frequency distributions are presented with omitted axes.
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Figure B.1: Average number of previous clicks per clicked impression item position.
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Figure B.2: Average click time step per impression item position.
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Figure B.3: Average session time per clicked impression item position.
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Figure B.4: Average number of clicks per time step.
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C.2 Hyperparameter optimization results

Display note The best overall configuration (O1) is represented by a yellow marker in continuous

distributions.
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Figure C.1: Input optimization ranking performance distribution.
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Figure C.2: Embedding dimensionality optimization ranking performance distribution.
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Figure C.3: Impression features branch optimization ranking performance distribution.
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Figure C.4: Sequential interaction features branch optimization optimization ranking perfor-

mance distribution. In the attention dimension plot, cross marks represent the Hierarchical,
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Figure C.5: Session features branch optimization optimization ranking performance distribu-

tion.
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Figure C.6: Joint MLP structure optimization ranking performance distribution.

ReLU Leaky PReLU
Activation function

0.4

0.5

0.6

M
R

R

Dense activation function

10
4

10
3

10
2

10
1

Learning rate

Adam initial learning rate

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Additional hyperparameter results

Figure C.7: Activation function and initial learning rate optimization ranking performance

distributions.

93



Appendix D

Final Model Results

D.1 Training curves
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Figure D.1: Pre-training M1 validation and accuracy curves for the base architecture.
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Figure D.2: Pre-training modified M1 validation and accuracy curves with 0.5 global dropout

and 0.00005 initial learning rate.
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D.2 Confusion matrix

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Predicted class

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Tr
ue

 c
la

ss

0.83 0.06 0.02 0.02 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.32 0.52 0.04 0.03 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.31 0.12 0.44 0.03 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.27 0.12 0.06 0.43 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.28 0.11 0.05 0.06 0.40 0.02 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.27 0.10 0.05 0.05 0.04 0.38 0.02 0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.26 0.08 0.04 0.05 0.04 0.04 0.40 0.02 0.02 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.24 0.08 0.04 0.04 0.03 0.03 0.05 0.38 0.03 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.23 0.08 0.04 0.03 0.02 0.03 0.03 0.03 0.42 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

0.24 0.07 0.04 0.03 0.02 0.03 0.03 0.02 0.05 0.39 0.02 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.24 0.07 0.03 0.03 0.02 0.02 0.02 0.03 0.04 0.03 0.39 0.02 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

0.22 0.07 0.03 0.04 0.02 0.02 0.02 0.02 0.04 0.02 0.04 0.40 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

0.21 0.06 0.03 0.04 0.02 0.02 0.03 0.02 0.02 0.03 0.03 0.03 0.39 0.02 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.01

0.20 0.07 0.04 0.03 0.02 0.02 0.02 0.02 0.03 0.02 0.03 0.03 0.02 0.40 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.19 0.07 0.03 0.03 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.03 0.42 0.02 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.20 0.06 0.03 0.03 0.02 0.01 0.01 0.02 0.03 0.02 0.02 0.03 0.03 0.03 0.03 0.37 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.01

0.20 0.05 0.03 0.03 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.03 0.41 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.01

0.19 0.06 0.02 0.03 0.02 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.02 0.03 0.04 0.41 0.01 0.01 0.01 0.00 0.01 0.01 0.01

0.19 0.06 0.02 0.03 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.03 0.02 0.03 0.40 0.02 0.01 0.00 0.01 0.00 0.02

0.18 0.06 0.03 0.02 0.02 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.01 0.02 0.03 0.03 0.02 0.41 0.01 0.01 0.01 0.01 0.01

0.21 0.06 0.03 0.02 0.02 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.37 0.01 0.01 0.01 0.02

0.21 0.04 0.03 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.39 0.01 0.01 0.02

0.18 0.06 0.03 0.02 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.04 0.02 0.02 0.38 0.02 0.03

0.17 0.06 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.03 0.39 0.03

0.17 0.05 0.03 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.04 0.42

M1* Confusion matrix

Figure D.3: Final model M1*’s confusion matrix, normalized over the true conditions (rows).

D.3 Specific examples
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Figure D.4: Click probabilities and attention weights for session sample 0029af4c7ac6d.
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D.3.2 Session 0034e1fff6628
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Figure D.5: Click probabilities and attention weights for session sample 0034e1fff6628.
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Figure D.6: Click probabilities and attention weights for session sample 0043391e99388.
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Figure D.7: Click probabilities and attention weights for session sample 0048f148890c5.
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Figure D.8: Click probabilities and attention weights for session sample 1ef61eeb4ccaf.
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Figure D.9: Click probabilities and attention weights for session sample 553764ffd8cd1.
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D.3.7 Session 66aa59653d4e6

S e q . a c t . 5 5 5 2 9 7

S e q . i t m . 5 5 3 5 9 4 7 8 0 0 0 7 8 0 0 0 5 3 7 9 0 6 1 6 6 3 2

I m p . i t m . 2 5
5 3 7 9 0 6 1 6 6 3 2 1 6 6 4 2 2 3 6 9 6 9 1 6 6 1 8 1 6 6 3 3 5 3 5 2 7 2 2 7 3 1 2 9 1 8 9 8 2 9 2 4 4 4 3 9 1 7 1 5 1 5 0 6 3 7 3 1 2 4 4 9

5 1 1 7 4 4 5 5 0 3 3 1 5 0 1 1 5 4 1 5 5 5 3 0 3 3 4 4 2 9 8 7 8 0 0 0 1 5 1 2 5 8 5 3 5 9 9 1 0 8 3 4 8 4 1 0 4 6 5 1 6 5 4 2
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Figure D.10: Click probabilities and attention weights for session sample 66aa59653d4e6.
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Figure D.11: Click probabilities and attention weights for session sample 73b9d04887b5f.
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Figure D.12: Click probabilities and attention weights for session sample e229614dd7ea2.

Example display notes Each session example contains a table with the sequential interactions and

corresponding item references leading up to the respective click event in the first two rows. The third

row corresponds to the presented impression list. The final prediction row contains the label y, the

position index of the predicted clicked item ŷmax, its click probability (Conf.) and the click probability

attributed to the label in case of a wrong prediction (y Conf.).

Item vocabulary codes are displayed instead of the original IDs. The action vocabulary codes are

presented in Table D.1 below.

Table D.1: Example action vocabulary codes.

Code Action

1 Change of sort order

2 Clickout

3 Filter selection

4 Interaction item deals

5 Interaction item image

6 Interaction item info

7 Interaction item rating

8 Search for destination

9 Search for item

10 Search for POI
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